 Date: \qquad

Graph the functions (5 points and HoS)

What form is this equation written in? vertex
What is the form/equation using a, b, c, h, k, q or $p: a(x-h)^{2}+k$

$$
x=h
$$

$$
(b, k)
$$

What is the VERTEX of this equation: $(-3,-1)$ Ming Max Min
\qquad
What is the VERTEX of this equation: $(-3,-1)$ Ming or Max Min

\qquad
${ }^{\text {ais }}$

Domain: $-\infty<x<\infty^{x} x \in(-\infty, \infty)$ Range: $-1 \leq y<\infty$ or $y \in[-1, \infty)$
v-intercept: $(0,35) \quad \begin{aligned} & y=4(0+3)^{2}-1 \quad \text { plug min } \\ & y=4(3)^{2}-1-33\end{aligned}$

$$
\begin{aligned}
& y=4(0+3)^{2}-1 \\
& y=4(3)^{2}-1=33 \text { p log } \text { So r }^{2} x
\end{aligned}
$$

. $(-2.5,0)(-3,5,0) \quad y=4(3)^{2}-1=33$

$$
\begin{aligned}
& 4(x+3)(x+3)-1 \\
& 4\left(x^{2}+6 x+9\right)-1 \\
& 4 x^{2}+24 x+36-1 \\
& \hline y=4 x^{2}+24 x+35 \\
& \text { 2. } F(x)=-1 / 2 x^{2}-2 x+5
\end{aligned}
$$

What form is this equation written in? Standard $y=4(x+2,5)(x+3.5)$
What is the form/equation using a, b, c, h, k, q or $p: a x^{2}+b x+c$

Vertex
function in Form:
Function in Intercept Form:

$$
y=-\frac{1}{2}(x+5.74)(x-1.74),
$$

$$
\left\{\begin{array}{l}
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4\left(-\frac{1}{2}\right)(5)}}{2\left(-\frac{1}{2}\right)} \\
x=\frac{2 \pm \sqrt{14}}{-1} \quad x=-5.74 \\
x=\frac{2+\sqrt{14}}{-1} \quad x=\frac{2-\sqrt{14}}{-1} \quad x=1.74
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Function in Intercept Form: } \\
& \text { 気 }(x+2.5)(x+3.5) \circ \\
& \left(x+\frac{5}{2}\right)\left(x+\frac{1}{2}\right) \\
& y=(2 x+5)(2 x+7) \\
& 4 x^{2}+24 x+35 \\
& \left(x+\frac{14}{4}\right)\left(x+\frac{10}{4}\right) \\
& \left(x+\frac{7}{4}\right)\left(x+\frac{5}{\frac{5}{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 0=4(x+3)^{2}-1, \frac{1}{\frac{1}{4}}=\sqrt{(x+3)^{2}} \quad x=-3 \pm \frac{1}{2} \text { log or } y \\
& \frac{1}{4}=\frac{4(x+3)^{2}}{4} \quad \frac{1}{4} \quad \frac{1}{2}=x+3 / \begin{array}{l}
x-3+\frac{1}{2} \quad x=-3-\frac{1}{2} \\
-3=-2.5 \\
x=-3.5
\end{array} \\
& \text { Function in Standard Form: }
\end{aligned}
$$

\qquad
\qquad
3. $g(x)=-4(x-3)(x+1)$

Graph the functions (5 points ana MoS)

What is the vertex of this equation: $(1,16)$ min or (max) max ais negtre
Domain: $\frac{x \in(-\infty, \infty)}{\text { Range: } y \in(-\infty, 16]}$ interval Negative: $-\infty<x<-1 \bigcup 3<x<\infty f(1)=-4(1-3)(1+1)$

$$
\begin{aligned}
& \text { interval Increasing: }-\infty<x<1 \quad y=-4(-2)(2) \\
& \text { interval Increasing: } \begin{array}{ll}
-\infty<x<1 & y=8.2 \\
& (0) 12)
\end{array} \\
& \begin{array}{l}
y=8.2 \\
f(1)=16
\end{array} \\
& \text { x-intercepts: } \quad(3,0) \quad(-1,0) \quad f(0)=-4(0-3)(0+1) \\
& x-3=0 \quad x+1=0 \quad \begin{aligned}
y & =-4(-3)(1)
\end{aligned} \\
& x=3 \quad x=-1
\end{aligned}
$$

Function in Standard Form:
Function in vertex

$$
\begin{aligned}
& \begin{array}{l}
y=-4(x-3)(x+1) \\
y=-4\left(x^{2}+3 x-3 x-3\right) \\
y=-4\left(x^{2}-2 x-3\right) \\
H(t)=\frac{1}{2} g t^{2}+v t+h
\end{array} \\
& \text { Function }
\end{aligned}
$$

Anibal herght of the abjed
Form:

Gravity:
in feet is $32 \mathrm{ft} / \mathrm{sec}^{2}$
in meters is $9.8 \mathrm{~m} / \mathrm{s}^{2}$
2 Amalia hits a volleyball at a velocity of 15 metes per second. If the ball was hit from a height of IN meters, determine the time it takes for the ball to land on the floor Assume that the ball is not hit by another player. about $3.2: \quad V=15 \quad y=9.8 \quad h=1.8 \quad H(U=0$

 on the ground? Seance the for was dropped and not thrown, $v=0$. abas 0 es a

$$
\begin{array}{ll}
h=14 \quad V=0 \quad N(t) & g=32 \\
0=-\frac{1}{2}(2 Q) t^{2}+0 t+14 \quad a=16 \quad b=0 \quad t=14 \\
0-16 t^{2}+14 \quad O R \quad t=\frac{-0 \pm \sqrt{0^{2}-4(-16)} 14}{2(-16)} \\
\frac{-14}{-16}=t^{2} \\
t=\sqrt{7 / 8}=0.935 \quad t=\frac{ \pm \sqrt{846}}{-32} \quad t= \pm 0.935
\end{array}
$$

$$
t=0 \quad \mid t=0.625]^{3} b=15, \quad t=-15 \pm \sqrt{260.28} \quad t=0.1156
$$

4. Carmen throw a penny into a fountain. She threw it from a height of
12 meters and al a velocity of o meters per second How long did it
for the penny tu hel the surface of the yatgr? ghoul 0 17 s throwing

$$
\begin{aligned}
& 0=-\frac{1}{2}(9.8) t^{2}-6 t+1.2
\end{aligned}
$$

$$
\begin{aligned}
& 0=-4.9 t^{2}+6 t+1.2 \\
& a=-4.4 \quad b=-6 \quad c=1.2
\end{aligned}
$$

$$
\begin{aligned}
& 4
\end{aligned}
$$

$$
\begin{aligned}
& 0=\frac{1}{2}(4.8) t^{2}+15 t+1.8 \quad y=9.8 \quad h=1.8 \quad H(t)=0 \\
& 0=-4.9 t^{2}+15 t+1,8 \\
& \begin{array}{l}
4=-4.9 \quad t=\frac{-155 \sqrt{(15)^{2}-4(-4.9)(1.8)}}{2(-4.9)} \\
b=15
\end{array} \\
& c=1.8 \quad t=\frac{-15 \pm \sqrt{260.28}}{-9.8} \quad t=3.177
\end{aligned}
$$

\qquad
\qquad
7. JP kicked a soccer ball and it's height can be modeled by the function $f(x)=-16 x^{2}+20 x+0.5$ where x is time in seconds and $f(x)$ is the height above the ground in feet.
a. Based on this model we know that the max height is 6.75 and it occurs at time $x=0.625$ seconds

$$
\begin{array}{ll}
\text { Vertex } x=\frac{-b}{\partial u}=\frac{-(20)}{2(-16)}=0.625 \quad \begin{array}{l}
f(0.625)=- \\
\\
\\
\text { led the ball from? } 0.5(0.625)^{2}+20(0.25)
\end{array} \\
y=6.75
\end{array}
$$

b. What is the height that JP kicked the ball from? 0.5 ff
d. When did the ball hit the ground? $f(x)=0$

$$
\begin{array}{lll}
0=-16 x^{2}+20 x+0.5 \\
a=-16 & x=\frac{-\left(201 \pm \sqrt{(20)^{2}-4(-16)(0.5)}\right.}{2(-16)} & x=\frac{-20+20.78}{-32} \quad x=\frac{-20-20.78}{-32} \\
c=0.5 & x=\frac{-20 \pm \sqrt{432}}{-32} & x=-0.0245(x=1.275 \text { seconds) }
\end{array}
$$

e. When is the ball at the height of 20 feet?

$$
\begin{aligned}
& \text { en is the ball at the height of } 20 \text { feet? } \\
& \begin{aligned}
20 & =-16 x^{2}+20 x+0.5 \\
-20 & -20 \\
-20 & \\
0 & =-16 x^{2}+20 x-19.8 \\
a & =-16 \quad b=20 \quad c=-19.5
\end{aligned} \begin{array}{c}
x=\frac{-(20) \pm \sqrt{(20)^{2}-4(-16)(-39.5)}}{2(-16)} \\
-32
\end{array}
\end{aligned}
$$

never, the ball new reaches k height
f. How close or far away can the goal be that is 6 ft tall for the ball to be able to score? of 20 ft

$$
\begin{array}{ll}
b=-16 x^{2}+20 x+0.5 & x=6 \\
0=-16 x^{2}+20 x-5.5 & x=\frac{-(20) \pm \sqrt{(20)^{2}-4(-16)(-5.5)}}{2(-16) \quad t=0.84 \mathrm{stec}} \quad 6.75 \mathrm{ft} \\
a=-16 \quad b=20 c=-5.5 & x=\frac{-20 \pm \sqrt{48}}{-32} \quad t=0.408 \text { seconds away }
\end{array}
$$

8. The discriminant formula is: $b^{2}-4 a c^{-32}$ the part under radical
9. What will the parabola graph look like if...

$$
\begin{aligned}
& 0<t<0.498 \\
& 0.84<t<1.275
\end{aligned}
$$

a. The function has a Negative Discriminant is:

$$
b^{2}-\operatorname{Mac}<0 \quad \sqrt{-\#}
$$

b. The function has a Positive Discriminant is:

$$
b^{2}-4 a c>0 \sqrt{-1}
$$

2 xinterepts
c. The function has a Discriminant of 0 is:

$$
b^{2}-4 a c=0 \sqrt{0}
$$

 1 xinterepts
\qquad
\qquad

Name: \qquad
You will be factoring or solving all the expressions or equations by factoring. The skills are all mixed, you will need to decide which skills are being applied and which to use.

$$
\begin{aligned}
& \text { 10. } 30 a^{4} b^{3} c-18 a^{3} b^{2} c^{2} \\
& 6 a^{3} b^{2} c(5 a b-3 c) \quad G C F
\end{aligned}
$$

$$
\begin{gathered}
\text { 12. } 7 t^{2}+17 t-12=0 \\
7 t^{2}+21 t-4 t-12=0 \\
7 t(t+3)-4(t+3)=0 \\
(t+3)(7 t-4)=0 \\
t+3=0 \quad 7 t-4=0 \\
t=-3 \quad t=4 / 7
\end{gathered}
$$

14. $\mathrm{y}^{2}+\mathrm{y}=56$

$$
\begin{aligned}
& y^{2}+y-56=0 \\
& (y+8 \quad(y-7)=0 \\
& y+8=0 \quad y-7=0 \\
& y=-8 \quad y=7
\end{aligned}
$$

16. $27 x^{2}-18 x=-3$

$$
\begin{array}{r}
27 x^{2}-18 x+3=0 \\
3\left(9 x^{2}-6 x+1\right)=0 \\
3(3 x-1)(3 x-1)=0 \\
3 x-1=0
\end{array}
$$

$$
\begin{aligned}
3 x-1 & =0 \quad 3 x-1=0 \\
x & =\frac{1}{3} \text { twice }
\end{aligned} \leftarrow^{3(3 x-1)(3 x-1)}
$$

18. $x^{2}-100$ Difference of squares

$$
\begin{aligned}
& (x-10)(x+10) \\
& 20.12 x^{4} y z^{2}-24 x^{2} y^{3} z^{3}+18 x^{2} y z^{3} \\
& 6 x^{2} y z^{2}\left(2 x^{2}-4 y^{2} z+3 z\right) \quad G(\sqrt{ }
\end{aligned}
$$

22.

$$
\begin{aligned}
& 49 x^{2}+42 x+16=11 \\
& 49 x^{2}+42 x+5=0 \\
& \left(x+\frac{35}{49}\right)\left(x+\frac{7}{44}\right) \\
& \left(x+\frac{5}{7}\right)\left(\frac{x+\frac{1}{7}}{x}\right)
\end{aligned}
$$

$$
b^{2} 4 a c=784
$$

35%

$$
\begin{aligned}
& \text { 11. } p^{2}-14 p-32=0 \\
& (\rho-16)(\rho+2)=0 \\
& p-16=0 \quad \rho+2=0 \\
& p=16 \quad p=-2
\end{aligned}
$$

13. $12 x^{2}+9 x=0$

$$
\begin{aligned}
& 12 x^{2}+9 x=0 \\
& 3 x(4 x+3)=0 \quad G(\sqrt{-} \\
& 3 x=0 \quad 4 x+3=0 \\
& x=0 \quad x=-3 / 4
\end{aligned}
$$

15. $49 x^{2}-1=0 \quad$ Difference of Squarer

$$
\begin{aligned}
& (7 x-1)(7 x+1)=0 \\
& 7 x-1=0 \\
& \hline x=\frac{1}{7} \quad x=-\frac{1}{7}
\end{aligned}
$$

17. $5 m^{2}=16 p-15$
$5 m^{2}-16 \rho+15=0$

$$
-6
$$

Not factorable
Quad Formula

21.

$$
\begin{array}{ll}
\text { 1. } \begin{array}{l}
63 g^{3}+252 \mathrm{~g}=0 \\
63 y\left(g^{2}+4\right)=0 \\
y=0 \quad
\end{array} \quad \begin{array}{l}
\text { Sum of Squares } \\
\left.y^{2}+4-2 i\right)(g-2 i)=0 \\
g^{2}=-4 \\
y=+\sqrt{-11}
\end{array} \quad q=2 i \quad g=-2 i
\end{array}
$$

23. $8 p^{2}-10 p-18=0$

$$
\begin{aligned}
& g^{2}=-4 \\
& g= \pm \sqrt{-4}
\end{aligned}
$$

perfect square,
so factorable

$$
\begin{aligned}
& \text { So dactorable } \\
& \begin{array}{l}
7 x+5)(7 x+1)=0 \\
2\left(4 p^{2}+4 p-9 p-9\right) \\
x=-\frac{5}{7} \quad x=-\frac{1}{7}
\end{array} \begin{array}{l}
2(4 p(p+1)-9(p+1)) \\
2(p+1)(4 p-9)=0
\end{array}
\end{aligned}
$$

4.-9

