Solve the following system of equations.

1. $\begin{gathered}A \\ C\end{gathered}\left(\begin{array}{c}2 x+3 y-z=9 \\ -2 x-y+2 z=2 \\ (x+y-2 z=3) 2\end{array}\right.$

Step 1: Create 2 new equations of 2 Variables

(E) $y=8$ Step 2 : Solve the 2 Variable Equation for the two variables
3. ${ }_{C}^{A}\left\{\begin{array}{c}-3 x+2 y+5 z=-10 \\ -x-2 y+3 z=6 \\ 2 x-y-z=8\end{array}\right)-2$

$2(8)+z=11$
$16+z=11$
(c) $x+(8)-2(-5)=3$
$x+8+10=3$

$$
\begin{aligned}
& \text { (D) } \\
& \text { (E) } 20 x-40 z=20 \\
&-20 x+20 z=-40 \\
&-20 z=-20
\end{aligned}
$$

$$
\text { (E) }-5 x+5(1)=10
$$

$$
-5 x+5=-10
$$

$$
-5 x=-15
$$

$$
(-15,8,-5)
$$

$$
x+18=3
$$

$$
\begin{gathered}
x+18=3 \\
x=-15
\end{gathered} \text { Step 3: plug in to one of the originals }
$$ to find the third.

2. $B\left\{\begin{array}{l}4 x-2 y-z=5 \\ C(x+4 y-z=-1 \\ 2 x-2 y-2 z=-2\end{array}\right.$
(A) $4 x-2 y-z=5$
(B) $-x-4 y+z=1$

(D) $(3 x-6 y=6)$
(E) $-6 x+2 y=-12$

$(3,-3,1)$
3. ${ }^{A}\left\{\begin{array}{c}x+y+z=-2 \\ 3 x-y-4 z=-25 \\ -x-y+9 z=52\end{array}\right.$
(A) $x+y+z=-2$ $-y=+3$
$y=-3$

$$
\text { (1) } \begin{aligned}
2 x-12 y & =12 \\
-2 x+2 y & =-12 \\
-10 y & =0 \\
y & =0
\end{aligned}
$$

$$
2 \begin{gathered}
\text { (E) }-6 x+2(0)=-12 \\
-6 x=-12 \\
x=2
\end{gathered}(2,0,3)
$$

$$
x=2
$$

(B) $(2)+4(0)-z=-1$ 2 to $-z=-1$

$$
\begin{aligned}
& \text { (E) } 4 x-3 z=-27 \\
& 4 x-3(5)=-27 \\
& 4 x-15=-27
\end{aligned}
$$

$$
4 x=-12
$$

(A) $(-3)+y+(5)=$

$$
y+2=-2
$$

5. Last year, a baseball team purchased new equipment. The equipment manager paid $\$ 20$ per bat and $\$ 12$ per glove and $\$ 15$ per ball, spending a total of $\$ 646$. The manager bought 40 pieces of equipment. They bought 7 more +7 bat's gloves, and balls that were bought.

Determine Variables
Total Valued Equation: \qquad x \# bats y: \# of gloves z : \# of balls
\qquad
$(z+7)+y+z=40$
Total Object Equation: \qquad
Relationship Equation: \qquad $x=z+7$ (1) $140+12 y+\frac{15 z}{506} \quad 7+y+2 z=40$ (1) $f(2 y+35 z=506$ (E) $(y+2 z=33)$

17 bats, 13 glares, and
10 balls were bought.
$20 z+140+12 y+15 z=646$
(E) $-12 y-24 z=-396$
(E) $y+2(10)=33$

$$
11 z=110
$$

$$
z=10
$$

$$
\begin{aligned}
& y+20=33 \\
& y=13
\end{aligned}
$$

Name \qquad
1-6 Additional Practice
6. Andrea Liskow was the top scorer in a women's professional basketball league for the 2006 regular season, with a total of 822 points. The number of two-point baskets that Andrea made was 60 less than double the number of three-point baskets she made. The number of free throws (each worth one point) she made was 15 less than the number of two-point field goals she made. Find how many free throws, two-point baskets, and three-point baskets Andrea Liskow made during the 2006 regular season.
Determine Variables $x: \#$ Free threes y : \# of opt baskets z: \#of 3 pt buckets
Total Valued Equation: \qquad $x+2 y+3 z=822 A$
(A) $x+2(x+15)+3 z=822 \quad$ (B) $(x+15)=2 z-60$

Total Object Equation: $y=2 z-60 \quad \beta$ $x+2 x+30+3 z=822 \quad E(x-2 z=-45)$

Relationship Equation: \qquad (1) $\sqrt[x]{x+3 z=792} \begin{aligned} x+6 z & =135\end{aligned}$
(E) $-3 x^{-3}+6 z=135$

161 Free throws
1762 pt baskets
103 3 pt baskets

$$
\begin{aligned}
& 9 z=927 \\
& z=103 \\
& x-2(103)=-45 \\
& x-206=-45 \\
& x=161
\end{aligned}
$$

(E)
7. Write the system of 3 variable equations for the matrix. $\left[\begin{array}{rrr|r}2 & 5 & 0 & 13 \\ -3 & 1 & 2 & 6 \\ 4 & 0 & -3 & 5\end{array}\right]$

$$
\begin{array}{l}2 x+5 y=13 \\ -3 x+y+2 z=6\end{array}
$$

8. Write the system of 3 variable

$$
\begin{aligned}
& 6 x-3 y+6 z=5 \\
& 4 x+6 y-7 z=4 \\
& -2 x+6 y+6 z=7
\end{aligned}
$$

Write the matrix for the system of equations and solve (remember $[A]^{-1}[B]$).

$$
\begin{aligned}
& \text { 9. }\left\{\begin{array}{r}
3 x+y=-4 \\
-2 x+4 y=7
\end{array}\right. \\
& {\left[\begin{array}{cc|c}
3 & 1 & -4 \\
-2 & 4 & 7
\end{array}\right]} \\
& {\left[\begin{array}{rr}
3 & 1 \\
-2 & 4
\end{array}\right]^{-1} \cdot\left[\begin{array}{r}
-4 \\
7
\end{array}\right]=} \\
& (-1.643,0.929) \\
& \text { 10. }\left\{\begin{array}{c}
4 x-y+2 z=10 \\
5 x+2 y-3 z=0 \\
x-3 y+z=6
\end{array}\right. \\
& {\left[\begin{array}{ccc|c}
4 & -1 & 2 & 10 \\
5 & 2 & -3 & 0 \\
1 & -3 & 1 & 6
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
4 & -1 & 2 \\
5 & 2 & -3 \\
1 & -3 & 1
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
10 \\
0 \\
6
\end{array}\right]=} \\
& \begin{array}{l}
x=1.407 \\
y=-0.963 \\
z=1.704
\end{array}
\end{aligned}
$$

11. $\left\{\begin{array}{c}3 x-2 y+z=6 \\ 4 x-6 z=6 \\ -3 y-4 z=-10\end{array}\right.$

$$
\left[\begin{array}{rrr|r}
3 & -2 & 1 & 6 \\
4 & 0 & -6 & 6 \\
0 & -3 & -4 & -10
\end{array}\right]
$$

$=\begin{array}{ccc}{\left[\begin{array}{ccc}3 & -2 & 1 \\ 4 & 0 & -6 \\ 0 & -3 & -4\end{array}\right]^{-1} \cdot\left[\begin{array}{c}6 \\ 6 \\ -10\end{array}\right]=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]}\end{array}$

Name
1-6 Additional Practice
3 Variable Linear Systems

Graph and find the solution to the system of inequalities
12. $y \geq x-3$

$$
y<\frac{1}{3} x-1
$$

Two Solution points include $\times 4$
Is $(-3,-3)$ a solution? Explain
Is $(3,0)$ a solution? Explain Prove it by plugging the points into the equations to check for true statements

Yes in shaded region No on a dashed $-3 \geq-3-3$ $-3 \geq-6$ fowl a bigeye blu laser too $-3<\frac{1}{3}(-3)$
$-3<$
$-3<-2+w^{2}$

$0<0 \times$ False
not less than
13. which region/s are solutions to the above system graphed below? Give two points in the solution set, if there are more than one region include one point from each region. Determine if the given point is a solution and explain your thinking.
$y<-|x-5|+2$
$y \leq 1 / 2 x-6$
Two Solution points include: $(0,-6)(5,-5)$
Is $(0,-6)$ a solution? Explain Yes on a solid boundary lime of

Is $(10,-3)$ a solution? Explain No, on a dashed boundary line of solution Is $(-6,-9)$ a solution? Explain works for limens Function but not for Absolute Value Eunfoun

Extension: Solve these Non Linear Systems using elimination or substitution on a separate sheet of paper.
14. $-x^{2}+y=12$
$7\left(x^{2}-3 x-y=0\right.$
15. $x-y=-2 \rightarrow x=4 \mapsto 2$
16. $y=x^{2}+2 x$
$-3 x=12$
$x^{2}-y^{2}-4 y=20$
$y=6+x^{2}$
$-(-4)^{2}+y=12 \quad(-4,28)$
$\begin{array}{rl}-(16)+y=12 \\ y=28 & -8 y+4=20 \\ -8 y=16 & x=-(-2)-2 \\ -4\end{array}$
$\begin{aligned} 6+x^{2} & =x^{2}+2 x \\ -x^{2} & =x^{2} \\ y & =2 x\end{aligned}$
$y=2 x$
$3=x$
$-8 y=16 \quad x=-4 \quad y=6+(3)^{2}$
$y=-2 \quad(-4,-2) \quad y=6+9$
\qquad

- Can you graph a Linear Equation or Inequality by hand? Explain the steps.

Equation g Groper y int b
move slope $\frac{\text { rise from ghat to }}{\text { ron }}$
Inequality
concent points

Graph line points make dashed if $>$ or \angle solid if \leq or \geq shade side $y>$ above $y<$ below

- Do you understand how to perform a TEST point check of a system of inequality? Explain
plug point ins for x and y into the inequalities if you get a true statement for both
then the point is a solution
- Do you understand a solution can be a point on a solid line or in a shaded region only? Why is this?
if it is on a dashed line its detent work for that inequality. Solid lies mean the y can equal the expressions value so the points on the line give a \geq \qquad it is truebecuense it is=.
- Why is a solution to a system different that a solution to an equation?
 for all equations/inequalities in the system
- How do you describe any of the regions created by one or more inequality functions/relations?

The overlapping shades regions are the solution points for the system, they we pints that satisfy the inegsalisties.

