Name enVision Algebra 2 1-6 Additional Practice 3 Variable Linear Systems PearsonRealize.com Solve the following system of equations. A (2x + 3y - z = 9)Step 1: Create 2 new equations of 2 3. $\binom{-3x + 2y + 5z = -10}{-x - 2y + 3z = 6}$ (2x - y - z = 8) - 21. 6 $\begin{cases} -2x - y + 2z = 2 \\ (x + y - 2z = 3) \end{cases}$ Variables 54-2=9 OPX124+22=6 -4+22=2 B-24-4+22=2 1 - 3x 1 - 2 + 52 = - 10 0 - 4x 12 5 - x (-2) + 32 = 6 B - x - 2 +82=-4(E)(-5x 24+2=11 Step 2: Solve the 2 Variable Equation for the two variables 2(8) + 2 = 11-407 = 20 +207=-40 16 +2 = 11 Ox+ (8)-2(-5)=3 -5×+5 : 207=-20 x+18=3 Step 3: plug in to one of the originals to find the third. $A_{1} = \begin{pmatrix} x + y + z = -2 \\ 3x - y - 4z = -25 \\ -x - y + 9z = 52 \end{pmatrix}$ 2. 6 $\begin{cases} (4x - 2y - z = 5) & -2 \\ (x + 4y - z = -1) & -1 \end{cases}$ (2x-2y-2z=-2)=-2 (Axty+2=-2 $\begin{array}{l}
\textcircled{(1)} \textcircled{(1)} \\
\end{matrix}{(1)} \\
\textcircled{(1)} \\
\textcircled{(1)} \\
\textcircled{(1)} \\
\end{matrix}{(1)} \\
\textcircled{(1)} \\
\textcircled{(1)} \\
\textcircled{(1)} \\
\end{matrix}{(1)} \\
\textcircled{(1)} \\
\end{matrix}{(1)} \\
\end{matrix}{(1)} \\
\end{matrix}{(1)} \\
\textcircled{(1)} \\
\end{matrix}{(1)} \\
\end{matrix}{(1)}$ 7=52 E)-6x+24 (E) 4x-3(5)=-27 $\begin{array}{c}
\left(\begin{array}{c} E \\ -6x + 2(0) = -12 \\ -6x = -12 \\ \hline (2,0,3) \\ \hline (x = 2) \\ \hline (2) + 4(0) - 2 = -1 \\ -2 + 0 - 2 = -1 \\ -2 - 3 - 2 - 3 \\ \hline (2 - 2) \\ \hline \end{array}$ X-12y=12 (A) (-3) +y+(5)=-2 (x =-3 +24 =-12 104 = 0 y+2=-7(-3,-4,5 Last year, a baseball team purchased new equipment. The equipment 5. manager paid \$20 per bat and \$12 per glove and \$15 per ball, spending a total of \$646. The manager bought 40 pieces of equipment. They bought 7 more +7 bats than balls. Write a system of equations and solve for the amount of bats, more gloves, and balls that were bought. but x: # bats y: # of gloves z: # of balls **Determine Variables** Total Valued Equation: 20x+12y+152 = 646 (20(2+7)+12y+152=646 (2+7)+y+24 D20(2+7)+12y+152-646 7+y+22=4 202+140+12y+152=646 7+y+22=4 (D/2y+352=506 E/y+22=33) Total Object Equation: x + y + z = 40Relationship Equation: $\chi = 7+7$ 129-242 =- 396 E y = 2(10) = 33y + 20 = 33y = 1317 bats, 13 glaves, and 10 balls were bought. 2=10 X = (10) + 7

Name	enVision Algebra 2		
1-6 Additional Practice 3 Variable Linear Systems	Pearson Realize.com		
 6. Andrea Liskow was the top scorer in a women's professio 2006 regular season, with a total of 822 points. The number made was 60 less than double the number of three-point bas free throws (each worth one point) she made was 15 less that goals she made. Find how many free throws, two-point bask Andrea Liskow made during the 2006 regular season. 	of two-point baskets that Andrea skets she made. The number of an the number of two-point field		
Determine Variables x: # Free threes y: #of	Zpt buskets z: #of 3 pt buskets		
Total Valued Equation: $X + 2y + 3z = 822 \text{ A}$	(1) x+2(x+15)+32=822 (B(x+15)=22-60		
Total Object Equation: $y = 22 - 60$ §	- () 3 x + 3 2 = 792 € -3		
Relationship Equation: $X = Y - 15$ C (X+15)= [Y] C	$ \begin{array}{c} (a) x + 2(x+15) + 52 = 822 \\ x + 24 + 30 + 52 = 822 \\ \hline (x + 24 + 30 + 52 = 822 \\ \hline (x - 22 = -45) \\ \hline (x + 32 = 792 \\ \hline (x - 22 = -45) \\ $		
161 Free throws	(Z=103) (Cy=X+15		
176 Zpt baskets	(E) X-2(103)=-45 y=161+15		
103 3pt buskets	E = 161 Z = 103 E = 161 X = 161 X = 161 Z = 103 G = 161 G = 176 G = 176		
7. Write the system of 3 variable equations for the matrix. $\begin{bmatrix} 2 & 5 & 0 & & 13 \\ -3 & 1 & 2 & & 6 \\ 4 & 0 & -3 & & 5 \end{bmatrix}$ $= 3 \times + 9 + 22 = 6$ $= 4 \times -32 = 5$ 8. Write the system of 3 variable equations for the matrix. $\begin{bmatrix} 6 & -3 & 6 & & 5 \\ 4 & 6 & -7 & & 4 \\ -2 & 6 & 6 & & 7 \end{bmatrix}$ $= 4 \times + 69 - 72 = 4 + -22 = 6 \times 4 + 62 = 7$			
Write the matrix for the system of equations and solve (remember [A] ⁻¹ [B]).			
9. $\begin{cases} 3x + y = -4 \\ -2x + 4y = 7 \end{cases}$ 10. $\begin{cases} 4x - y + 2z = 10 \\ 5x + 2y - 3z = 0 \\ x - 3y + z = 6 \end{cases}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{cases}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{cases}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{cases}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{cases}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{cases}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{bmatrix}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{bmatrix}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{bmatrix}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{bmatrix}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{bmatrix}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{bmatrix}$ $\begin{cases} 4y - 1 & 2 & 0 \\ 5 & 2 & -3 & 0 \\ 1 & -3 & 1 & 6 \end{bmatrix}$	11. $\begin{cases} 3x - 2y + z = 6 \\ 4x - 6z = 6 \\ -3y - 4z = -10 \end{cases}$ $\begin{cases} 3 & -2 & & 6 \\ 4 & 0 & -6 & & 6 \\ 0 & -3 & -4 & & -10 \end{cases}$ $= \begin{bmatrix} 3 - 2 & & 6 \\ 4 & 0 & -6 & & 6 \\ 0 & -3 & -4 & & -10 \end{bmatrix}$ $= \begin{bmatrix} 3 - 2 & & 6 \\ 4 & 0 & -6 & & 6 \\ 0 & -3 & -4 & & -10 \end{bmatrix}$		

enVision Algebra2 Name 1-6 Additional Practice PearsonRealize.com 3 Variable Linear Systems Graph and find the solution to the system of inequalities 12. $y \ge x - 3$ Two Solution points include $y < \frac{1}{2}x - 1$ Is (-3,-3) a solution? Explain Is (3,0) a solution? Explain Prove it by plugging the points into the equations to check for true statements No on a dashed Yes in shaded region 10 line -37-3-3 0>3-3 -32-6/ true 070/ Twe is= (bigger ble claser to 0 0< 3(3)-1 -3 4 = (-3)-1 10 -10 021-1 -3 <-1-1 0 2 ° X False -32-2 tou -10

13. which region/s are solutions to the above system graphed below? Give two points in the solution set, if there are more than one region include one point from each region. Determine if the given point is a solution and explain your thinking.

Solution Region/s: y < -|x - 5|+2 $y < \frac{1}{2}x - 6$ Two Solution points include: (0, -6) (5, -5)2 Is (0,-6) a solution? Explain Is (10,-3) a solution? Explain No, on a dashed boundary line of Yes on a solid boundary line of boundary line a solution resion Is (-6,-9) a solution? Explain No Work's for Imear Function but not for Absolute Value Fun Extension: Solve these Non Linear Systems using elimination or substitution on a separate sheet of paper. 14. $-x^2 + y = 12$ 15. $x-y=-2 \rightarrow \chi \neq \gamma = 2$ 16. $y = x^2 + 2x$ $x^2 - y^2 - 4y = 20$ $x^{2} - 3x - y = 0$ $y \neq 6 + x^2$ $\begin{array}{c} -3x = 12 \\ (x = -4) \\ (-4)^{2} + y = 12 \\ (-5)^{2} + y = 12 \\ (-6)^{2} + y = 12 \\ (-6)^{2} + y = 12 \\ (-7)^{2} + y = 12 \\ (-8)^{2} + 4 - y^{2} - 4y = 20 \\ (-8)^{2} + 4 - y^{2} - 4y = 20 \\ (-8)^{2} + 4 - y^{2} - 4y = 20 \\ (-8)^{2} + 4 - y^{2} - 4y = 20 \\ (-8)^{2} + 4 - y^{2} - 4y = 20 \\ (-8)^{2} + 4 - y^{2} - 4y = 20 \\ (-8)^{2} + 4 - y^{2} - 4y = 20 \\ (-9)^{2} + 4 - y^{2} - 4 + y^{2} + 4 - y^{2} - 4 + y^{2} + 4 + y^{2} - 4 + y^{2} + 4 + y^{2}$ -(16)+y

Name	e	enVision Algebra 2
1-6 Ac	additional Practice riable Linear Systems	PearsonRealize.com
0 Eq.	Can you graph a Linear Equation or Inequality by hand? E ation Graph y int b move slope fire from your to move slope for from your to ment points Do you understand how to perform a TEST point check or Explain plug point more for x and is you get a true staten then the point is a solu	fasystem of inequality? Y make dushed if For 2 Shade side y > above y mbo the negralities ment for both
0	Do you understand a solution can be a point on a solid lin only? Why is this? if it is an a dashed for that for equality. y can equal the expre on the line give a _ ?	The its desn't with Solid lines mean the ssions value so the points =_it is true because it is =.
0	Why is a solution to a system different that a solution to a Solution poustwork for all equations (megalitics in the gysten	
0	How do you describe any of the regions created by one of functions/relations? The overlapping shades regions are for the system, they are plats megsalistics.	