Dividing Polynomials by Synthetic Division Day 5

Division
Algorithm

Factored Form 1:
$f(x)=d^{\prime}(x) \cdot q(x)+r(x)$

Divided Form 2:

Synthetic Division
uses

Can only be used when dividing by a linear binomial like:

$x^{1}-a$ or $x^{1}+a$

Uses:

1. To factor a polynomial into a linear binomial factor and a polynomial factor
2. To check if a number is a root/factor/solution for x, if the remainder is 0 , then it is
3. To evaluate the polynomial function for a given x value, the remainder value is the y-value paired with the x factor you checked
4. To divide two functions and get the slant asymptote for the new rational function

What method would you us for each of the following?
A. $\left(2 x^{3}-4 x+5\right) \div(2)$
4) long
B. $\left.\left(3 x^{3}-4 x^{2}+5 x\right) \div 1 x^{1}-4\right)$ Synthetics
C. $\left(40 x^{21}-4 x^{20}+5\right) \div$ O $\left.x+7\right)$ long division
D. $\left(40 x^{21}-4 x^{20}+5\right) \div\left({ }^{3}+7 x+10\right)$ long

Synthetic Division

1. Set it up:
A. Only write the coefficients of the top polynomial, making sure to put 0 as a place holder for missing terms.
B. You will be dividing by the zero/solution of the factor: if divisor is $x-3$, then $x=3$, you will write 3 on the left
2. Synthetic Division:
A. Bring down the first constant to the third row
B. Multiply the divisor by the number in the third row
C. Write product in the second row of the next column
D. Add the first and second row. put sum in same column third row
E. Repeat steps \#3,4,5 until finished

$$
f(x)=(x+2)\left(x^{2}-3\right)+7
$$

13. $2 x-11+\frac{62}{x+5}$
14. $x^{2}-3 x+5-\frac{9}{x+3}$

Textbook: pg. 177 \#13-18 write $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}(\mathrm{x}) / \mathrm{d}(\mathrm{x})$ form
15. $x+3+\frac{18}{x-3}$
16. $3 x^{2}-2 x-2-\frac{4}{x-1}$
17. $x^{3}+x^{2}-2 x+1-\frac{6}{x-6}$
18. $x^{3}-x^{2}+5 x-9+\frac{10}{x+5}$

