\qquad Solving 3×3 Systems Hour \qquad
Assigned Date \qquad Due Date \qquad

Self.	Cannot	Attempted	Nearly There
Assessment:	Can explain to others		

Objective: Vocabulary Associated with Three Variable Systems
in Technology to Model Mathematics \& Vocabulary
Resource Credit: Section 1.4
BIM Algebra 2 Text p29-36
Unfortunately, sometimes the special cases of 3,3 systems of equations are the hardest to understand. If a system of equations does not have a single solution, then it either has NO solutions or it has infinitely many solutions. This is hard to determine which scenario is present using determinants or matrix inverse because the determinant of both types of systems is 0 .

Systern 4

System 5

Solutions bo a $\}$ var, able System
Use the numbers under each representation of a three variable system to answer the questions below

1. \qquad Which of the systems has exactly one solution? $(y, 2)$ points
2.
3. Which of the systems has infinitely many solutions?
r Which of the systems has no solutions?

Directions: Match the systems A, B, C and D to the numbered system examples above and give an ALGEBRAIC reason for the selection of system

4. System a is an example like system $\frac{3}{\text { algebraically how do you know this classification? All Palled equations, } A, B=B \text { in } A \cdot-5=C}$ but constants ane. eferent
3. System 8 is an example like system 5

Algebraically how do you know this classification?
4. Spier C is an example like system 4 Algebraically how do you know this classification?
7. System D is an example like system Algebraically how do you know this classification?

2 Parallel equations $A \cdot 2=B$ bot constant di forest Cis almost parallel io A but the z term is- 15 instead None are pallet and (A) $-4 x+3 y+7 z=25$ (D) + (B) are Parallel $\left\{\begin{array}{l}\text { (D) } y+19 z=59 \\ \text { (8) } 8 x-4 y+24 z=\end{array}\right.$
$\left\{\begin{array}{l}\text { (B) } 8 x-4 y+24 z=68 \\ \text { (C) }-8 x-5 y+3 z=-5 \\ \hline \text { E }-9 y+27 z=63\end{array}\right.$

8. System C is an example like system Agebraically how do you know this da

 Agebraically how do you know this classification$$
\begin{aligned}
& (5)+(5) \text { we th } \\
& 3 x-6 y+21 z=12 \\
& 3 x+9 y+36 z=-33 \\
& 3 \text { (1) By }-15 z=-21
\end{aligned}
$$

$$
(D) \cdot-1=(E)
$$

Solve these systems of equations. Show all work or thinking. If there is no solution say so, if there are
infinitely many solutions say so and write as an ordered triple in terms of y.
9. $A(5 x+5 y+5 z=-20) 4$

B $4 x+3 y+3 z=-6$
$(-4 x+3 y+3 z=9)$ ty Elimination
10. $6[x+10 y+4 z=122$
B) $-5 x]+y-4 z=-25$

B $-5 x+y-4 z=-25$
c $(-3 z)=-\sqrt{x}$ Substitution
(c)
(A) $\left(\frac{(c)}{-3} z\right)+10 y+4 z=122$
$-18 z+10 y+4 z=122$
(D) $10 y-14 z=122$
(E) $\frac{35 y+35 z}{35}=-\frac{85}{35}$
(D) $K+1 z=2.5$ Pale $(y+z=-1) \cdot-1$
(c)

Fy

$$
\begin{aligned}
& 0=3.5 \\
& \text { False }
\end{aligned}
$$

No Solution
11. $7^{3 x+} 3 y+3 z=-12$

$$
\text { 11. }\left(\begin{array}{l}
3 x+3 y+3 z=-12 \\
2 x+(3 y+5 z=9 \\
-3 .(-x-y-z=3)
\end{array}\right)_{50}+x_{0}-3
$$

A and c are Parallel NoSdetion
B not parallel
(C) $-3 x-3 y-3 z=9$
$\begin{aligned}(A+3 x+3 y+3 z & =-12 \\ 0 & =-3\end{aligned}$
False
No Solution
(B) $-5(-3 z)+y-4 z=-25$

$$
\begin{aligned}
& 5(-3 z)+y-1 z \\
& 15 z+y-1 z=-25 \\
& 17=-25
\end{aligned}
$$

(1) $(y+11 z=-25) \cdot-10$
12. $\quad .-3\left(\begin{array}{l}3 x+3 y+3 z=-12 \\ 2 x+3 y+5 z=9 \\ -x-y-z=4\end{array}\right\} .-3$
(A) and (C) are the same line, $A,-3=$ (C)
(C) $-3 x+3 y-3 z=12$
(A) $\begin{aligned} 3 x+3 y+B z & =-12 \\ 0 & =0\end{aligned}$ Tine

2) $-3 x+y+2 z=6$
3) $4 x-3 z=5$
8. Write the system of 3 variable equations for the matrix. $\left[\begin{array}{ccc|c}6 & -3 & 6 & 5 \\ 4 & 6 & -7 & 4 \\ -2 & 6 & 6 & 7\end{array}\right], ~$

1) $6 x-3 y+6 z=5$

$$
\begin{aligned}
& \text { 1) } 6 x-3 y+6 z=5 \\
& \text { 2) } 4 x+6 y-7 z=4 \\
& \text { 3) }-2 x+6 y+6 z=7
\end{aligned}
$$

Write the matrix for the system of equations and solve (remember $[A]^{-1}[B]$).
9. $\left\{\begin{array}{r}3 x+y=-4 \\ -2 x+4 y=7\end{array}\right.$

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
3^{x} & 1 & -4 \\
-2 & 4 & 7
\end{array}\right]} \\
& x=-1.643 \\
& y=0.929
\end{aligned}
$$

10. $\left\{\begin{array}{c}4 x-y+2 z=10 \\ 5 x+2 y-3 z=0 \\ x-3 y+z=6\end{array}\right.$

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
4 & -1 & 2 & 10 \\
5 & 2 & -3 & 0 \\
1 & -3 & 1 & 6
\end{array}\right]} \\
x=1.407 \\
y=-0.963 \\
z=1.704
\end{gathered}
$$

11. $\left\{\begin{array}{c}3 x-2 y+z=6 \\ 4 x-6 z=6 \\ -3 y-4 z=-10\end{array}\right.$

$$
\left[\begin{array}{ccc|c}
3 & -2 & 1 & 6 \\
4 & 0 & -6 & 6 \\
0 & -3 & -4 & -10
\end{array}\right]
$$

$$
\begin{aligned}
& \left.x=\left[\begin{array}{l}
3 \\
y=[\\
z= \\
1
\end{array}\right], ~\right], ~
\end{aligned}
$$

12. Last year, a baseball team purchased new equipment. The equipment manager paid $\$ 20$ per bat and $\$ 12$ per glove and $\$ 15$ per ball, spending a total of $\$ 646$. The manager bought 40 pieces of equipment. They bought 7 more bats than balls. Write a system of equations and solve for the amount of bats, gloves, and balls that were bought.
Determine Variables $x:$ \#fofbats $y:$ \#of gloves z. \# of balls
Total Valued Equation: \qquad $20 x+12 y+15 z=646$
(4) $20(\varepsilon)+77+12 y+15 z=646$ ((2)
B

Total Object Equation: \qquad $x+y+z=40$ $20 z+140+12 y+15 z=646(2+7+y+z=40$

Relationship Equation: \qquad $x=z+7$ 17 bits. 13 gloves, and 10 balls were bought
\qquad (D) $12 y+35 z=506$ $7+y+2 z=40$

$$
\begin{gathered}
11 z=110 \\
z=10 \\
x=(10)+7
\end{gathered}
$$

13. Andrea Liskow was the top scorer in a women's professional basketball league for the 2006 regular season, with a total of 822 points. The number of two-point baskets that Andrea made was 60 less than double the number of three-point baskets she made. The number of free throws (each worth one point) she made was 15 less than the number of two-point field goals she made. Find how many free throws, two-point baskets, and threepoint baskets Andrea Liskow made during the 2006 regular season.

Total Valued Equation: \qquad $x+2 y+3 z=822$ (A)

$$
\text { (A) } x+2(x+15)+32=822 \text { (B) }(x+15)=22-60
$$

Total Object Equation: \qquad
Relationship Equation:

Andrea Lijkow

$$
\begin{aligned}
& \begin{array}{l}
x+2 x+30+3 z=82 \\
\text { (0) } \begin{array}{r}
x+3 z=792 \\
\text { (E }-5 x+6 z=135
\end{array} \text { (Az }=927
\end{array} \\
& \text { (E) }(x-2 z=-45) \\
& \text { (E) }-3 x+6 z=13 \\
& \begin{array}{rc}
\begin{array}{l}
\frac{9 z}{4}=\frac{927}{9} \\
z=103 \\
\end{array} & \begin{array}{l}
x-2(103)=-45 \\
x-206=-45 \\
x=161
\end{array} \\
\text { (c) } y=16+15 &
\end{array} \\
& \text { (c) } \\
& y=(16)+15 \\
& y=176
\end{aligned}
$$

1762 pt baskets
103 3 pt baskets
14. Graph and find the solution to the system of inequalities

$$
\begin{equation*}
y \geq x-3 \tag{0,-3}
\end{equation*}
$$

shade above solid line

$$
\begin{equation*}
y<\frac{1}{3} x-1 \tag{1}
\end{equation*}
$$

Two Solution points include: $(-1,-4)\binom{0}{-10,-6}(1,-1)$
Prove it by plugging the points into the equations to check $(1,-2)$ for true statements $(-2) \geq(1)-3 \quad(-2)<\frac{1}{3}(1)-1$

Is $(-3,-3)$ a solution? Explain

$$
y<-|x-5|+2
$$

Solution Regions: solution and explain your thinking

15. Which region/s are solutions to the above system graphed below? Give two points in the solution $s \epsilon^{4}$ there are more than one region include one point from each region. Determine if the given point is a

$$
y \leq 1 / 2 x-6
$$

$$
\frac{(1,-6)}{\left(\frac{(-5,-4)}{(1-10)}\right.}
$$

 Is $(-6,-9)$ a solution? N_{0}, Interrechoriwh dished I. ne

