Station 1 - Measures of Central Tendency and Variation

How should we measure the Center? Where does the Center tend to be?

Mean - the Center or Average. Add up every piece of data and divide by how many items there were. Outliers mess with the mean and drag the center towards them.

Median - the Center or Middle data item. Order the data from least to greatest, including repeats, and find the exact middle. If there are two numbers in the middle, take the average (mean) of those two numbers (add the two numbers and divide by 2). Outliers do not mess with the median, they are tossed aside as the center is found.

Mode - The most repeated number. If the amount of times a number is repeated is the same as for another number, then the data is considered Bi-modal and has two modes. Data could have more than one or two modes. Outliers do not effect the mode.

How should be measure or display the spread of data? How much or how wide does the data vary?

Range - The distance between the maximum and the minimum. Subtract the biggest and the smallest number.

Maximum - the biggest data value
Minimum - the smallest data value

IQR - Inter Quartile Range (see Box and Whisker Plots) the distance between the first and third quartile. The breadth of the box part.
Subtract Q3- Q1
Q3 is the upper quartile, the median of the upper half of data
Q1 is the lower quartile, the median of the lower half of data

Standard Deviation - the distance from the Mean that can give a probability percent for the likely hood of randomly getting that data value.

Station 2 - Box and Whisker Plots.

Definition	A data display that depicts the spread of data using the Medians. The box part is 50% of the data and each whisker is 25% The Box is created by the Median, and the upper half median and the lower half median. You can clearly see outliers (data points that are more like flukes than reasonable)
Steps for Calculating and Drawing The Box	(1) Find the Median or Q2: List all data values in order from least to greatest and find the median and draw a vertical line (2)) Find the Lower Quartile or Q1: Find the median of the lower half set of data and draw a vertical line (3) Find the Upper Quartile or Q3: Find the ' median of the upper half set of data draw a vertical line 4) Finish drawing a box around these quartiles 5) Calculate Outliers: Find Inter Quartile Range (subtract Q3Q1) and multiply by 1.5 . Add to Q3 and subtract fromQ1
How to Calculate Outliers	How far out is too far out? Any thing farther than the distance of the box and a half above or below the box is too far. 1. Take Q3-Q1 2. Multiply this IQR by 1.5 to get the Outlier Distance 3. Add the Outlier Distance to Q3, anything bigger than that value is an Outlier 4. Subtract the Outlier distance from Q1, anything smaller than this is an outlier. FQR: Q3-Q1 $17-4=13$ Outlier Distance: IQR.1.5 $13 \cdot 1.5=19.5$ - Q3+19.5 = any thing above $17+19.5=36.5$ is an outlier - Q1-19.5 45 is an outlier $4-19.5=-15.5$ is an outhier no bothom outlier

Spread of Data	Distribution Bell curve close distance : compuct Box \& Whisker Skewed Left Screwed up on the left (longer tail on the lett) Skewed Right screwed up on the right (longer tail on the right) right
Extra Information	Box and Whisker plots break up the data set into 4 parts, where the same amount of data points are within each Quartile You can clearly see how close or spread out each quarter of the data points were
Example	40 Students were surveyed how long they study for their math tests. How many students studied less than half an hour? $\quad 50 \%$ of the data is below Q2 at 30, so 50\% of 40 people is 20 people, 20 people studied less than 30 minutes What percentage of people study between 20 and 35 minutes? 50\%, which would be 20 people. What percentage of people study more than 35 minutes? 25%, which would be 10 people

Station 3 - Normal Distribution

Definition	A bell curved shape is made when the Mean, Median, and Mode are all the same
How to label a Normal Curve	
Diagram	No. of standard deviations from the mean The area under the curve (the percentages) between values is the probability that the data falls in between those values

Station 4 - Z-Score

sEIfflavaord 76wzon dyvantis iv 3navi

	. 00	01	. 02	03	. 04	05	. 06	. 0	. 08	99
-3.4	. 000	. 0003	03	. 0003	. 0003	03	03	. 0003	0003	02
-3.3	. 0005	. 0005	. 0005	. 0004	. 0004	. 0004	. 0004	. 000	004	.0003
-3.2	. 0007	. 0007	. 0006	.0006	. 0006	.0006	. 0006	. 0005	. 0005	. 0005
-3.1	. 0010	. 0009	. 0009	. 0009	. 0008	. 0008	. 0008	. 0008	.007	. 0007
-3.0	0013	0043	.0013	. 0012	. 0012	. 0011	. 0011	. 001	0010	. 0010
-2.9	. 0019	. 0018	. 0018	. 0017	. 0016	.0016	. 00 t5	. 0015	. 0014	. 0014
-2.8	. 0026	. 0025	. 0024	. 0023	. 0023	. 0022	. 0021	.002	0020	. 0019
-2.7	. 0035	. 0034	. 0033	.0032	. 0031	. 0030	. 0029	. 0028	. 0027	. 0026
-2.6	. 0047	. 0045	. 0044	. 0043	. 0041	. 0040	. 0039	. 0038	. 0037	. 0036
-2.5	. 0062	. 0060	.0059	.0057	. 0055	. 0054	. 0052	. 005	.0049	:0048
-2.4	. 0082	. 0080	. 0078	. 0075	. 0073	. 0071	. 0069	. 0068	. 0066	. 0064
-2.3	. 0107	. 0104	. 0102	. 0099	. 0096	. 0094	. 0091	. 0089	. 0087	. 0084
-2.2	. 0139	. 0136	. 0132	. 0129	. 0125	. 0122	. 0119	. 0116	. 0113	. 0110
-2.1	. 0179	. 0174	. 0170	. 0166	. 0162	. 0158	. 0154	. 0150	. 0146	. 0143
-2.0	. 0228	. 0222	. 0217	. 0212	. 0207	. 0202	. 0197	. 0192	. 0188	. 0183
-1.9	. 0287	. 0281	274	26	. 0262	. 0256	. 0250	. 024	. 0239	. 0233
-1.8	. 0359	. 0351	. 0344	. 0336	. 0329	. 0322	. 0314	. 0307	. 0301	. 0294
-1.7	. 0446	. 0436	. 0427	. 0418	. 0409	. 0401	. 0392	. 0384	. 0375	. 0367
-1.6	.	537	. 0526	. 0516	. 0505	. 0495	. 0488	75	5	. 0455
-1.5	. 0668	. 0655	. 0643	. 0630	. 0618	. 0606	. 0594	. 0582	. 0571	. 0559
-1.4	. 0808	. 0793	. 0778	. 0764	. 0749	. 0735	. 0721	. 0708	. 0694	. 0681
-1.3	. 096	. 0951	. 0934	. 0918	. 0901	. 0885	. 0869	085	. 0838	. 0823
-1.2	.1151	. 1131	. 1412	. 1093	. 1075	. 1056	. 1038	. 1020	. 1003	. 0985
-1.1	. 1357	. 1335	. 1314	. 1292	. 1271	. 1251	. 1230	. 1210	. 1190	. 1170
-i.0	. 1587	. 1562	539	1515	. 1492	. 1469	. 1446	. 1423	. 1401	. 1379
-0.9	.1841	. 1814	. 1788	. 1762	. 9736	.1711	. 1685	. 1660	. 1635	. 1611
-0.8	. 2119	. 2990	. 2061	. 2033	. 2005	. 1977	. 1949	. 1922	. 1894	. 1867
-0.7	. 2420	. 2389	. 2358	. 2327	. 2296	. 2266	. 2236	. 2206	. 2177	. 2148
-0.6	. 2743	. 2709	. 2676	. 2643	. 2611	. 2578	. 2546	. 2514	. 2483	. 2451
-0.5	. 3085	. 3050	. 3015	. 2981	. 2946	. 2912	. 2877	. 2843	. 2810	. 2776
-0.4	. 3446	. 3409	. 3372	. 3336	. 3300	. 3264	. 3228	. 3192	. 3156	. 3121
-0.3	. 3821	. 3783	. 3745	. 3707	. 3669	. 3632	. 3594	. 3557	. 3520	. 3483
-0.2	. 4207	. 4168	. 4129	. 4090	. 4052	. 4013	. 3974	. 3936	. 3897	. 3859
-0.1	. 4602	. 4562	. 4522	. 4483	. 4443	. 4404	. 4364	. 4325	. 4286	. 4247
-0.0	. 50	. 49	. 49	. 4880	. 484	. 4801	. 4761	. 4721	. 4681	. 4641

