Station 1 – Measures of Central Tendency and Variation

	How should we measure the Center? Where does the Center tend to be?
Definition	<u>Mean</u> – the Center or Average. Add up every piece of data and divide by how many items there were. Outliers mess with the mean and drag the center towards them.
Central Tendency	<u>Median</u> – the Center or Middle data item. Order the data from least to greatest, including repeats, and find the exact middle. If there are two numbers in the middle, take the average (mean) of those two numbers (add the two numbers and divide by 2). Outliers do not mess with the median, they are tossed aside as the center is found.
rendericy	<u>Mode</u> – The most repeated number. If the amount of times a number is repeated is the same as for another number, then the data is considered Bi-modal and has two modes. Data could have more than one or two modes. Outliers do not effect the mode.
	How should be measure or display the spread of data? How much or how wide does the data vary?
	<u>Range</u> – The distance between the maximum and the minimum. Subtract the biggest and the smallest number.
Definition	Maximum – the biggest data value Minimum – the smallest data value
Variation	 <u>IQR</u> – Inter Quartile Range (see Box and Whisker Plots) the distance between the first and third quartile. The breadth of the box part. Subtract Q3 – Q1 Q3 is the upper quartile, the median of the upper half of data Q1 is the lower quartile, the median of the lower half of data
	Standard Deviation – the distance from the Mean that can give a probability percent for the likely hood of randomly getting that data value.

Station 2 – Box and Whisker Plots.

Definition	A data display that depicts the spread of data using the The box part is 50% of the data and each whisker is 25% The Box is created by the Median, and the upper half me You can clearly see outliers (data points that are more lik	dian and the lower half median.
Steps for Calculating and Drawing The Box	 Find the Median or Q2: List all data values in order from least to greatest and find the median and draw a vertical line Find the Lower Quartile or Q1: Find the median of the lower half set of data and draw a vertical line Find the Upper Quartile or Q3: Find the median of the upper half set of data draw a vertical line Finds the upper half set of data draw a vertical line Finish drawing a box around these quartiles for Calculate Outliers: Find IQR (subtract Q3 - Q1) and multiply by 1.5. Add to Q3 and subtract fromQ1 	$Q_1^{1} Q_2^{2} Q_3^{3}$ T = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
How to Calculate Outliers	How far out is too far out? Any thing farther than the d below the box is too 1. Take Q3-Q1 2. Multiply this IQR by 1.5 to get the Outlier Distance 3. Add the Outlier Distance to Q3, anything bigger t 4. Subtract the Outlier distance from Q1, anything s FQR: Q3-Q1 17-4=13 Outlier Distance: IQR-1.5 13-1.5 Q3+19.5= any thing about 12+19.5=36.5 is an output of the constant of t	far. The second secon

Station 3 – Normal Distribution

Definition	A bell curved shape is made when the Me	ean, Median, and Mode are all the same
How to label a	The middle of the curve is the Mean or average of the dataS Or σ -The Standard Deviation is how much away the data piece has deviated from the Mean or center of the data. The	Calculate Standard Deviation using the following formula: $S_{X} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}}$ $n = \text{The number of data points}$ $y_{j} = \text{Each of the values of the data}$
Normal Curve	bigger the standard deviation, the more spread out the data is. Add the s or σ to the Mean to get the 1 st standard deviation away, add it again, to get the 2 nd standard deviation away, and it again to get the 3 rd standard deviation away. Repeat with subtraction.	X = The mean of X1 -3 -2 Normal Distribution Curve Take each data piece, and subtract the Mean from it. Square that difference. Add it to the next squared difference from the next data piece. Repeat. Divide by 1 less than the total number of data pieces. Square root the result.
Diagram	The area under the curve (th	Equal Halves 99.7% 95.5% 68.3% 34.13% 13.60% 2.13% μ $+1\sigma$ $+2\sigma$ $+3\sigma$ Equal Halves 2.13% 2.13% μ $+1\sigma$ $+2\sigma$ $+3\sigma$ Eviations from the mean respectively between values is the tra falls in between those values

Station 4 – Z-Score

TABLE A: STANDARD NORMAL PROBABILITIES

	i0;	63	03	5	-05	.06	.07	.08	εŋ.
	5000.	0003	0003	.0003	.0003	6003	£000.	£000.	0002
	.0005	.0005	0004	.0004	,000	.0004	.000	000	.0003
_	.0007	.0006	,0006	.0006	9000.	0000	<u>:000</u>	.000	.0005
	6000"	6000.	6000'	8000.	8000	.0008	9000.	.0007	.0007
_	.0013	.0013	.0012	.0012	1100.	11007	1100.	0100.	.0010
-	.0018	8100.	.0017	.0016	9100.	.0015	0015	.0014	.0014
	.0025	.0024	.0023	.0023	0022	.0021	,0021	.0020	0019
	.0034	.0033	.0032	,0031	.0030	,0029	.0028	.0027	.0026
	.0045	.0044	.0043	.0041	,0040	.0039	.0038	.0037	.0036
	.0060	.0059	0057	.0055	.0054	.0052	.0051	.0049	.0048
	0800.	.0078	.0075	.0073	1200,	0069	.0068	.0066	.0064
	.0104	2010.	6600.	,0096	.0094	1600"	0089	.0087	.0084
	.0136	.0132	0129	.0125	.0122	0119	.0116	.0113	0110.
	.0174	.0170	.0166	.0162	.0158	0154	.0150	.0146	.0143
	.0222	.0217	.0212	.0207	.0202	7610.	.0192	.0188	.0183
	.0281	.0274	.0268	.0262	.0256	.0250	.0244	6 EZO.	.0233
	.0351	,0344	.0336	92E0.	.0322	.0314	0307	.0301	.0294
	.0436	.0427	0418	.0409	.040	0392	.0384	.0375	.0367
	.0537	.0526	.0516	.0505	.0495	0485	0475	.0465	.0455
	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
	.0951	.0934	8160.	1060'	.0885	.0869	.0853	.0838	.0823
	.1131	.1112	.109 3	.1075	.1056	1038	.1020	.1003	.0985
	.1335	.1314	.1292	.1271	.1251	.1230	.1210	0611.	.1170
	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
	.1814	.1788	.1762	.1736	1171.	.1685	,1660	1635	.1611
	.2090	.2061	.2033	2005	1977	.1949	.1922	.1894	.1867
_	.2389	.2358	.2327	.2296	.2266	2236	.2206	2177	.2148
	2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
	3050	.3015	1867.	.2946	.2912	.2877	.2843	.2810	.2776
	.3409	.3372	.3336	3300	.3264	3228	.3192	.3156	.3121
	.3783	.3745	.3707	.3669	3632	.3594	.3557	.3520	.3483
	.4168	.4129	4090	.4052	.4013	3974	3936	3897	.3859
4602	.4562	.4522	.4483	.4443	4404	.4364	.4325	.4286	.4247
_	4960	,4920	.4880	4840	.4801	476]	,4721	.4681	4641

÷

TABLE A: STANDARD NORMAL PROBABILITIES (CONTINUED)

.

1	۵	.	~	~	•		~		-	~		0	.	•	~	_	~	~	5	~	r~	~	~	5	vo	~	**	+	_	5	_	*0	.	•	,
8j	5359	.575	614	.651	.687	2	754	785	813	838	862	.883	Ŝ.	.917	631	44	.954	.963	970	976	86	.985	986.	66.	993	8	966.	<u>,</u>	666	9866	9999.	666	666	66	2000
.08	\$319	.5714	6019.	.6480	-6844	0617.	71517	.7823	.8106	.8365	8599	.8810	7668	.9162	9306	.9429	.9535	.9625	6696.	.9761	.9812	.9854	.9887	6166"	4666	1966	5965	5795.	0866	9866.	0666	9993	\$666	9666	2004
.07	5279	.5675	6064	6443	.6808	7157	.7486	7794	870B.	.8340	.8577	.8790	.8980	.9147	,9292	.9418	.9525	9196.	.9693	.9756	98086	.9850	.9884	1166	.9932	9949	2966.	.9972	9799	.9985	998 9	2666.	2666	9666	5000
90,	5239	.5636	.6026	.6406	.6772	.7123	.7454	.7764	.8051	.8315	.8554	.8770	.8962	.9131	9279	.9406	.9515	9608	.9686	.9750	.9803	.9846	1886.	6066	1666"	9948	1966'	1266	9799.	.9985	6866'	5665	9994	9666	1000
.05	5199	5596	5987	6368	.6736	.7088	.7422	4677.	.8023	.8289	.8531	.8749	8944	3115	.9265	.9394	.9505	9599	.9678	9744	9198	.9842	9878	9066"	.9929	.9946	0966'	01.66	8766.	9984	6865	9992	4 666.	9666'	
¥.	.5160	.5557	.5948	(633]	.6700	.7054	7389	7704	.7995	.8264	,8508	.8729	8925	6606	.9251	.9382	.9495	1656.	.9671	9738	56793	9838	.9875	9066	.9927	9945	9959	96966	1166.	9984	.9988	9992	9 994	9666	
69	.5120	5517	5910	.6293	.6664	.7019	.7357	.7673	7967.	,8238	.8485	8708	.8907	.9082	.9236	9370	.9484	.9582	.9664	9732	9788.	9834	1786.	1066	.9925	9943	.9957	9968	£7.66,	6866	9988	1666.	9994	9666	
.02	.5080	.5478	.5871	.6255	.6628	6985	.7324	.7642	7939	8212	.8461	.8686	\$\$\$\$.	.9066	.9222	.9357	.9474	9573	.9656	.9726	.9783	.9830	9868	9696	9922	9941	9356	9967	.9976	.9982	1866	1666"	9 994	<u> 9995</u>	
.01	.5040	.5438	.5832	.6217	1659.	6950	.7291	.7611	.7910	.8186	.8438	8665	.8869	9049	.9207	9345	.9463	.9564	.9649	9119.	9778	.9826	.9864	9896	9920	.9940	.9955	9966	5792.	.9982	7866.	1666	5666	<u>9995</u>	
80	.5000	.5398	5793	.6179	.6554	5169.	.7257	.7580	.7881	,8159	.8413	8643	.8849	9032	.9192	9332	.9452	9554	964)	£176.	9772	.9821	1986.	5686.	918	9938	5953	9965	P766.	1866.	9987	0666	5666	5666.	
2	0.0	0.1	0.2	03	0.4)	0.5	0.6	0.7	0.8	0.9	1.0	Ξ	2	2	4	5	1.6	1.7	8.2	6.3	5.0	2.1	2.2	53	2.4	2.5	2.6	2.7	2.8	2.9	3.0		3.2	<u>.</u>	