\qquad
\qquad
2022-2023 Semester 1 Exam Review Guide

1. Explain the parts of a box and whisker plot. the riddle of the data
is the Median and Q2 it splits the data in half
median
\qquad

2. What is IQR? And what is it used for? IQR is the Inter Quartile Range, Q3-Q1, the distance between the low and upper middles.
3. 4. 5 ($F Q R$) is the distance away allowed, any data forthpt the biggest of I one box pot has a bigger IQR than another, is that better? (Is it more consistent or less ado consistent?) Having a bigger IQR is worse, it mems the lareoutiors data is no r_{s} spread out and inconsistat, less ondusions can be made. Smaller IQR is better more desirable, it means the data is more enosistent
1. 75% of Data would lie ABOVE what part of the box plot?

Q1 Each part of box plot is $1 / 4$ or 25% of the data, since its using Middles and cutting the data in milf and in half again
5. The middle 50% of Data would lie where?
in the Box between Q1 and Q3
6. 50% of Data would lie BELOW what part of the box plot?

Q2 since $25 \%+25 \%=50$
7. How do you know if something is an outlier? (from data and from box plot)
subtract $Q 3-Q 1=I Q R$
Subtract Q1-OAH:er Distance $=$ \qquad
Multiply $1.5(I Q R)=$ Outlier Distance arr thing below is an an outlier.
Add Q3+ Outlier Distance $=$ \qquad anydata bigger than this is an outher.
8. A normal distribution has a mean of 50 and a standard deviation of 5. Draw the bell curve and write in the Empirical Rule percentages to answer the following.
$0.15+235+13.5 \%+34 \%+38 \%$

b. is more than 65

$$
50 \%+34 \%+13.5 \%=97.5 \%
$$

0.15%

$$
0.15 \%+4.7 \%+13.5 \%
$$

$$
=16 \%
$$

d. According to the Empirical Rule, if this sample is normally distributed, then about 68% of the student weights should lie within what weights? \qquad and \qquad 55
9. Approximately what number is the standard deviation of this data?

$$
\sigma=5 \text { they folders also }
$$

we can see that $\#$ ouch the bottom is 5 apart
10. What is Central Tendency? With what do we measure it?

Central Tendency is where the center tends to be. We use node, median, and mean to measure it. Median is best when there are outliers, otherwise mean (the awcrase) is mo st accurate, bat some the mes mode is best representable
11. If a bell curve is norma what is the measure of central tendency? Draw and label a picture
 the middle is all 3
12. If a bell curve is skewed left (tail on the left) what is the central tendency and where is the mean and median now? Draw and label a picture
 outlier at left brings mean (average) dawn mode is the mostrepented mode is the most petals
wis where men
Which is en the right in the hi
\qquad
\qquad
\qquad 2022-2023 Semester 1 Exam Review Guide
13. Solve the following systems of equations:

Your answer must have justification Solve by hand and check with matrix
a.

$$
\begin{aligned}
& 2 x-5 y=3 z+31 \\
& 5 z-3 x+4 y=-35 B \\
& 6 y+8 z-4 x=-56
\end{aligned}
$$

(A) $(2 x-5 y-3 z=31)-2$
(B) $(-3 x+4 y+5 z=-35)^{2}$
(C) $-4 x+6 y+8 z=-56$
$4 x)-10 y-6 z=62$
(D) $-4 y+2 z=6$
(D) $-4 y+2 z=6$
(E) $(-7 y+z=23) \cdot-2$
(E) $-7 y+z=23$
(E) $+14 y-2 z=-46$
(D) $-4 y+2 z=6$
(E) $-7(-4)+z=23$ $28+z=23$ $-28 \quad-28$

(A) $(2 x-5 y-3 z=31) \cdot 3$ $2 x+20=-15+31$

$$
\text { b. } \begin{aligned}
& 2 x-5 y=3 z+31 \quad A \\
& 4 x-10 y-6 z=62 \quad B \\
& -14 x+35 y+21 z=-207 C
\end{aligned}
$$

(A) $2 x-5 y-3 z=31$
(1), $4 x-10 y-6 z=62$
(C) $-14 x+35 y+21 z=-207^{\sqrt{4}}$
(A) =(B) overtopping planes
(A) $-7(2 x-5 y-3 z=31)$

$$
-4 x+35 y+21 z^{2} 217
$$

(A)//(C)
parallel planes not wite multiples
(A) $2 x-5(-4)=3(-5)+31$
14. Select the BEST choice that displays the image of your solution for Systems a and b from question

D)

No solutions (three planes do not intersect at ONE point, and NO parallel planes)
B)
C)

Inflaltely winy solutions The planes intersect in a line or are the same plane.
F) No solutions (two planes are overlapping, but the third plane is parallel)
No solutions (three plane are parallel)

E)

No solutions (two of the three planes are parallel)
)

F)

\qquad Algebra 2 WT Date: \qquad Hour: \qquad
2022-2023 Semester 1 Exam Review Guide
Use the following quadratic function and its equivalent 2 other forms to answer the related questions
Quadratic Function $f(x)=3 x^{2}+12 x-36$

$$
f(x)=3(x+6)(x-2)
$$

$$
f(x)=3(x+2)^{2}-48
$$

15. Complete the related table for $f(x)$

This is the graph of the function $f(x)$ above. It may help.
Show any necessary work here

$$
\begin{aligned}
f(4) & =3(4+6)(4-2) \\
\text { left } & =3(10)(2) \\
\text { A.o.s.-5 } & =30.2 \\
& =60
\end{aligned}
$$

$$
-2-5=-7
$$

Quadratic Function $g(x)=-3 x^{2}+12 x+36$

$$
g(x)=-3(x-6)(x+2)
$$

$$
g(x)=-3(x-2)^{2}+48
$$

16. Complete the related table for $g(x)$

This is the graph of the function $g(x)$ above. It may help.
Show any necessary work here

\qquad
\qquad

2022-2023 Semester 1 Exam Review Guide

Use the following quadratic functions to answer the related questions Quadratic Function $f(x)=-x^{2}+2 x+8$

$$
g(x)=2 x^{2}-4 x-16 \quad \text { and } h(x)=\frac{1}{2} x^{2}-1 x-4 \quad \text { and } j(x)=1(x-1)^{2}+9
$$

Graph C

17. All the solid lined functions represent the graph of $f(x)$, and the dashed lined functions represent the transformed functions g, h or j. Match the graphs with the correct function below AND explain how you know.
a. $g(x)=2 x^{2}-4 x-16$
b. $h(x)=\frac{1}{2} \cdot x^{2}-1 x-4$
c. $j(x)=1(x-1)^{2}+9$
is Graph
is Graph C
a is positive \bigoplus
y int is $(0, c) \rightarrow(0,-t(t)$
gruphis wider $a=1 / 2$ shrink
yint $(0,-4)$, the graph's
the joint on Croph B lint is not as low.
is Graph A
votexis $(1,9)$ lines up and yong is positive
$1(0-1)^{2}+9=1+9=10$ is very low, the yaphis also skinny and $a=2$ which means stretch
18. ONE of four of the function equations above represents a vertical reflection and vertical stretch of which function is it?
$(a . g(x))$
b. $\begin{aligned} & h(x) \\ & a=1 / 2\end{aligned}$
c. $j(x)$
$a=12 \quad a=1$
19. Complete the table of powers of i. Recall: there are only four acceptable powers of $i\{1,-1, i$, and $-i\}$

\qquad
\qquad
2022-2023 Semester 1 Exam Review Guide
Assume n and m are positive values

$$
\begin{array}{ll}
\text { Quadratic Formula } & \text { Discriminant } \\
=\frac{-b \pm \sqrt{b^{2}-4 a c}}{} \quad \mathrm{D}=b^{2}-4 a c
\end{array}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Special Quadratic Functions
$f(x)=(x-n)^{2}=x^{2}-2 n x+n^{2}$ $g(x)=(m x-n)^{2}=m^{2} x^{2}-2 m n x+n^{2}$
$h(x)=(x+n)^{2}=x^{2}+2 n x+n^{2}$ $k(x)=(m x+n)^{2}=m^{2} x^{2}+2 m n x+n^{2}$

Special Quadratic Functions

$$
\begin{aligned}
v(x)= & (x+n)(x-n) \\
& =x^{2}-n^{2} \\
w(x)= & (m x-n)(m x+n) \\
& =m^{2} x^{2}-n^{2}
\end{aligned}
$$

Graph A

Refer to the information above to answer the following questions.

\qquad Algebra 2 WT Date: \qquad Hour: \qquad 2022-2023 Semester 1 Exam Review Guide

Application of Quadratic Model

Suppose a particular "star" is projected from a firework at a starting height of 450 feet with an initial upward velocity of 82 ft . $/ \mathrm{sec}$. given the star's height h at time t in seconds. Round to 2 decimal places.

$$
h(t)=-16 t^{2}+82 t+450
$$

30 When does the remains of the firework hit the ground? (You must state the actual time not just the capital letter from the graph)

$$
\begin{aligned}
& 0=-16 t^{2}+82 t+450 \\
& a=-16 \quad b=82 \quad c=450 \\
& i t=\frac{-(82) \pm \sqrt{(82)^{2}-4(-16)(450)}}{2(-16)} \\
& t=\frac{-82 \pm \sqrt{35524}}{-32} \\
& t=\frac{-82+188.48}{-32} \quad t=\frac{-82-188.481}{-32} \\
& t=9.328 \quad t=8.45 \text { seconds }
\end{aligned}
$$

According to the model,
39. At what time does the star reach its maximum height?
vertex

$$
\text { A.d. } .0 x=\frac{-b}{2 a}=\frac{-(82)}{2(-16)}=2.5625
$$ seconds

32. What is the maximum height of the star?
play in A.OS. to get which is height

$$
\begin{aligned}
& \text { which is height } \\
& h(t)=-16\left(2.562^{2}+82(2.56)+450\right. \\
& h(t)=555.06 \mathrm{ft}
\end{aligned}
$$

33. Explain why this model is only feasible when $\mathrm{t}>0$ and t D (see label on graph)
After time D, the star nit the ground and cant decent further.
34. When will the star be at least a height of 50 feet above the ground? Round to 2 decimal places and express your final answer using inequalities.

$$
\begin{aligned}
& \text { cont have negative } \\
& \text { time }
\end{aligned}
$$

$$
\begin{aligned}
& 500=-16 t^{2}+82 t+450 \\
& -500 \quad-500 \\
& 0=-16 t^{2}+82 t-50 \\
& t=\frac{-82 \pm \sqrt{82^{2}-4(-16)(-50)}}{2(-16)} \\
& t=\frac{-82 \pm \sqrt{3524}}{-32} \\
& t=\frac{-82+59.36 \quad t=-82-59.36}{-32} \quad t=4.42 \\
& t=0.71 \quad \text { between }
\end{aligned}
$$ time

29. Explain where a, b, c come from.
A. $=-16$ care from $32 \mathrm{ft} / \mathrm{sec}^{2}$ for gravity- $(-1 / 2)$
$b=82$ came from the positive force pushing the star upwards w/velocity 82 ft $c=450$ cane from the starting height of the star from the firework 450 ft in the air.
\qquad
\qquad
Refer to the given graph to answer the related questions

30. $f(x)=-0.03(x-0)^{3}(x-3)^{2}$
31. State the critical points for this graph

Local Max: $(1.75,17) \quad$ y intercept: $(0,0)$
Local Min: $(3,0) \quad x$ intercept: $(0,0)$
Absolute max/min:
$(3,0)$
None yow down
Domain: Range:
$-\infty<x<\infty$

$$
-\infty<y<\infty
$$

$x \in(-\infty, \infty)$ 36 This graph is increasing over which intervals of x ?

$$
-\infty<x<1.75 \cup 3<x<\infty
$$

3 ㅎ. This graph is decreasing over which intervals of x ?

$$
1.75<x<3
$$

Write the equations for each function given the graph, Label the Vertex, and Name the function family.

\qquad Algebra 2 WT Date: \qquad Hour: \qquad
2022-2023 Semester 1 Exam Review Guide
Given the following functions identify how it shifted from its original parent function. Also identify if there's a vertical reflection, stretch, or shrink.

(Enriched Only will do 46 and 47)
A. Factor the polynomials completely
B. State all the roots
C. Describe End Behavior
D. Sketch a Graph

Provided that $g(x)=2 x^{3}-6 x^{2}-8 x+24$
4. Provided that $h(x)=-2 x^{5}+16 x^{4}-32 x^{3}$

Possible: $\pm 1 \pm \frac{1}{2} \pm 2 \pm 3 \pm \frac{3}{2} \pm 4 \pm 6 \pm 8 \pm 12 \pm 24$
Roots Lend Coct: 2 pos Deg:3odd

$$
\begin{aligned}
& 312-6-8 \quad 24 \\
& \begin{array}{l}
\downarrow \quad 6 \quad 0-24 \\
20-8 \\
2
\end{array} \\
& (x-3)\left(2 x^{2}-8\right) \\
& 2(x-3)\left(x^{2}-4\right) \\
& 2(x-3)(x-2)(x+2) \\
& x=3, x=2, x=-2
\end{aligned}
$$

$$
\text { as } x \rightarrow \infty \quad y \rightarrow \infty
$$

$$
\text { as } x \rightarrow-\infty \quad y \rightarrow-\infty
$$

$$
\text { lint }(0,24)
$$

$$
2 \frac{\mid 20-8}{\frac{14}{24} 40}
$$

$\underbrace{\begin{array}{r}(x-3)(x-2)(2 x+4) \\ 2(x+2)\end{array}}$ $2(x+2)$

$$
\begin{aligned}
& \quad-2 x^{3}\left(x^{2}-8 x+16\right) \\
& -2 x^{3}(x-4)(x-4) \\
& \qquad \begin{array}{ll}
h(x)= & -2 x^{3}(x-4)^{2}
\end{array} \\
& \begin{array}{ll}
x=0 & x=4 \\
\text { with } m=3 & \text { with } m= \\
\text { Flit } & \text { bon } \\
\text { puss } & \text { Deg :5 }
\end{array} \\
& \text { Lead coeff: }-2 \\
& \text { as } x \rightarrow \infty \\
& \text { as } x \rightarrow-\infty \quad y \rightarrow-\infty
\end{aligned}
$$

