Name: \qquad KEY

a.) Find the slope of the line passing through points A and $B .{ }^{\cdot} m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ $m=\frac{4(-3)}{-3-7}=\frac{6}{-4}=-\frac{2}{3}$
b.) Find the midpoint of $\overline{A B}$. "Midpoint: $\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)$

MONT $=\left(\frac{-\partial+7}{2}, \frac{4+(-2)}{2}\right)=\left(2 \frac{1}{2}, 1\right)$
c.) Find the distance between points A and B. *Pythagorean Theorem $a^{2}+b^{2}=c^{2}$

DISTANCE $=\sqrt{R M_{E} V^{2}+\angle C S E^{2}}=\sqrt{G^{2}+(-6)^{2}}=\sqrt{117}$ or 10.8
2.) You are given quadrilateral GEOM with vertices at $G(-3,4) E(5,6) \quad O(4,-2) \quad M(-4,-4)$.
a.) Plot the 4 points and find the slope of all 4 sides.

$$
\begin{aligned}
& \overline{G E A N D} \overline{M O}=\frac{2}{8}=\frac{1}{4} \\
& \overline{G M} \text { AN } \overline{E O}=\frac{8}{1}=8
\end{aligned}
$$

b.) Find the length of all 4 sides (using the Pythagorean Theorem). Round your answers to the nearest tenth of a unit.

$$
\begin{aligned}
& \text { mEAN N } \overline{M O}=\sqrt{5^{2}+\partial^{2}}=\sqrt{68}=28.2 \\
& \text { GM AM ED }=\sqrt{i^{2}+5^{2}}=\sqrt{65} \text { on } 81
\end{aligned}
$$

c.) What conclusions can you draw about quadrilateral GEOM based on your answers from (a) and (b)?

$$
\begin{aligned}
& \text { OPPOSITE SIDES HIVE THE SANE SLOPE. } \\
& \text { OPPOSITE SIDES HIE EQUAL LENGTHS. }
\end{aligned}
$$

3.) You are given line m with a slope of $2 \frac{1}{4} . \quad \int \frac{1}{4}=\frac{9}{4}$
a.) What is the slope of a line parallel to line m written as an improper fraction?
b.) What is the slope of a line perpendicular to line m written as an improper fraction?

Use the diagram below for problems (4)-(8)

4.) Find the length of all 3 segments of $\triangle A B C$. Round to the nearest tenth of a unit.

$$
\begin{aligned}
& \overline{A B}=\sqrt{3^{2}+6^{2}}=\sqrt{45}=67 \\
& \overline{B C}=\sqrt{13^{2}+1^{2}}=\sqrt{170}=130 \\
& \overline{A C}=\sqrt{10^{2}+(-5)^{2}}=\sqrt{125}=112
\end{aligned}
$$

5.) Find the slopes of all 3 sides of $\triangle A B C$.

6.) Using your information from questions (3) and (5), is $\triangle A B C$ a right triangle? Briefly explain your answer. YES. SINES AS ANAT THE SLOPES OF 2 AND - \bar{b}. SINCE THE SLOPES ARE GPOSITE RECIPROCRS, $\overline{A B S}$ I $\overline{A C}$ PULS, $\angle B A C$ IS A RIM $A \cup G L E$, MONO $\triangle A B C$ A RIGA \triangle.
7.) A median is a segment drawn from one vertex of a triangle to the midpoint of the opposite side. Every triangle has 3 medians, one starting from each vertex. Find the slope of the median of $\triangle A B C$ to $\overline{B C}$.

$$
\begin{aligned}
& \text { MIDPONT OF } \overline{B C}=\left(\frac{-1+i 2}{2}, \frac{-1+0}{2}\right)=\left(\frac{11}{2},-\frac{1}{2}\right) \text { a }\left(5 \frac{1}{2},-\frac{1}{2}\right) \\
& \text { SCOPE }=\frac{5-\left(-\frac{1}{2}\right)}{2-\frac{11}{2}}=\frac{\frac{11}{2}}{-\frac{2}{2}}=\frac{11}{7}=-\frac{2}{7}=-\frac{11}{7}
\end{aligned}
$$

8.) An altitude is a segment drawn from one vertex of a triangle and is perpendicular to the opposite side. Every triangle has 3 altitudes, one starting from each vertex. Find the slope of the altitude of $\triangle A B C$ to $\overline{B C}$.

$$
\begin{aligned}
& \text { SCOPE OF BC (AROM \#5) }=\frac{1}{13} \\
& \text { SCOPE OF HCTITUNE (OPPOSTERECWROOR CC } \frac{1}{13} \text {) }=-\frac{13}{1} \text { 二N -13 }
\end{aligned}
$$

9.) Challenge Question. Find the point where the altitude from problem (8) intersects $\overline{B C}$.
ALTITRE: $y=m x+b$

$$
5=-13(2)+b
$$

$$
b=31
$$

$$
\begin{aligned}
\operatorname{SiJE} \overline{B C}: y & =m x+b \\
0 & =\frac{1}{13}(i 2) 1 b \\
b & =-\frac{12}{13}
\end{aligned}
$$

$$
\text { (A) } \quad \begin{aligned}
& y=-13 x+3 i \\
& 3 x+y=3 i
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{1}{3} x-\frac{i 2}{13} \\
& x-13 y=12
\end{aligned}
$$

$$
\text { (B) } x-13 y=12
$$

$$
\begin{array}{rl}
\text { (4) }(13 x+y=31)-13= & 164 x+1 \beta_{y}=40 \\
x-13 y=12 & x-12 y=12
\end{array}
$$

$$
\left(2 \frac{15}{34},-\frac{25}{34}\right)
$$

$$
170 x=415
$$

$$
x=\frac{83}{34} \cdots 2 \frac{15}{34}
$$

$$
y=\frac{25}{314}
$$

