\qquad Additional Practice/ Guided Practice/Project Hour \qquad

Objective: Solving Systems of Equations in Three Variables

- Set up a system of equations in three variables to model real-life behavior
- Solving system of three variable equations through elimination method

Section 1.4 BIM Algebra 2 Text p29-36
https://bit.ly/2 NgTPXm
kola

1. Uncle Scrooge cains he has a bag of 30 coins containing nickels, dimes and quarters. The total value of the coins is There are twice as many nickels as there are dimes. How many of each type of coin does he have? 2.55 2. mole rule ls

Study Plan n is alone
Define Variables:
n : \# of nickels
d: \# of dimes
$\mathrm{q}:$ \# of quarters
Reflect
Snivel.
3 mes
3 quaides The 3 Equations are:

$$
A \text { 1) } B+d+q=30
$$

2) $0.05 \hat{d}+0.10 d+0.25 q=$

$n=2 d$
2. Comstock sold a total of 440 tickets for $\$ 3940$. Each regular ticket cost is $\$ 5$, each premium ticket is $\$ 15$ and each elite ticket cost is $\$ 25$. The number of regular tickets was three times the number of premium and elite tickets combined. How many of each ticket were sold? $=3$ -
Study
Define Variables:
X: of regular tickets
Y: \# of premium tricked
Z: \#-of elite tickets sat 6

Reflect

$$
(0) \begin{aligned}
& 0=-x+3 y+3 z) 5 \\
& 0=-5 x+15 y+15 z
\end{aligned}
$$

$$
0=-5 x+15 y+15 z
$$

$3 . \quad x$
3. The sum of three integers is 40 . Three times the smaller integer is equal to the sum of the others. Twice the larger is equal to 8 more than the sum of the others. Find the integers.

4. The sum of the angles A, B, and C of a triangle is 180°. Angle C is equal to the sum of the other two angles. Five times angle A is equal to the sum of angle C and B . Find the angles.

Study

Define Variables:
X : measure of Angle A
Y: measure of Angle B
Z: measure of Angle C

Reflect

$m \angle A=30^{\circ}$
$m \angle B=60$
$5^{\text {th }}$

Plan

The 3 Equations are:
(A) 1) $x+y+z=180$

$$
\text { 1) } x+y+z=180
$$

(3) $z=x+y$

(y)
3) $\begin{aligned} & 5 x=z+y \\ & 5 x-y-z=0\end{aligned}$

$$
\text { (D) } z=90^{\circ}
$$

$\begin{array}{rl}x & y \\ 5 & \text { A parabola p passes through three points }(-2,11),(-1,4) \text {, and }(1,2) \text {, Use these points and }=60^{\circ}\end{array}$

$$
\text { step } 3
$$

(E) $x=30^{\circ}$

$$
\begin{aligned}
(A)(30)+y+(90) & =180 \\
y+120 & =180 \\
y & =60^{\circ}
\end{aligned}
$$

$y=a x^{2}+b x+c$ to construct a system of three linear equations in terms of a, b, and c and solve it.

Study

Define Variables:

Plan

The 3 Equations are:

b: the coefficient b for x

a: the coefficient a for x^{2}

Act

Solve

$$
\begin{aligned}
& \text { 1) } 11=a(-2)^{2}+b(-2)+c(B) 4=a-b+c \\
& \text { (fin } 11=4 a-2 b+c
\end{aligned}
$$

$$
\text { (14) } 11=4 a-2 b+c
$$

$$
\text { (哖) } \begin{aligned}
& 11=4 a-2 b+c \\
& 2=a(-1)^{2}+b(-1)
\end{aligned}
$$

c : the constant c term

Reflect

The Parabola that goes through these points is:
$y=2 x^{2}-x+1$
(c)

$$
\begin{gathered}
4=a-b+c \\
2=a(1)^{2}+b(1)+c
\end{gathered}
$$ 1

(3) $4=a-b+c$
(D) $(6$
(A) $11=4 a-2 b+c$
(D) $-18=-6 a-6 c$
(3) $(2=a+b+c) 2 c$
6. A parabola passes through three points $(-1,7),(1,-1)$ and $(2,-2)$. Use these points and $y=a x^{2}+b x+c$ to construct a system of three linear equations in terms of a, b, and c and then solve the system.

Study

Define Variables:
a:

Plan

The 3 Equations are:
1)
b:
2)
c:
3)

Reflect

The Parabola that goes through these points is:
2. Reg $=330$, Prem $=46$, Elite $=64$
6. $a=1, b=-4, c=2 \quad y=x^{2}-4 x+2$

$$
\text { 4. } \mathrm{A}=20^{\circ} 0^{\circ} \mathrm{B}=40^{\circ}, C=\frac{1200}{40^{\circ}}
$$

