Algebra 2 SAT Prep Wkst 1
$1 . \quad 6$

($5 x$. $\frac{3}{6}$) whermultiplying factor by $10 y$, multiply straight aces

A $\times / 2$
B $\quad(25 x) / 9$
C $M\left(2 y^{\wedge} 2\right)$
(1) $x /\left(4 y^{\wedge} 2\right)$

$$
\frac{15 x}{60 y^{2}}=\frac{1 x}{4 y^{2}}
$$

$3 b(b-4)+6(b-8)$ distribute
B $3 b(b-2-16)$
(D) $3\left(b^{\wedge} 2-2-16 b\right)$
3. ……ese distribute

3 $-4 c^{2}+c^{3}-x^{2}-8 c^{3}+6 e$ subtraction
A $7 c^{\wedge} 3+9 c^{\wedge} 2-3 c-3 \quad B \quad 7 c^{\wedge} 3+c^{\wedge} 2-3 c$ watch
c $-7 c^{\wedge} 3+c^{\wedge} 2+9 c$

$$
-7 c^{3}-9 c^{2}+9 c
$$

-1 $-7 c^{\wedge} 3-9 c^{\wedge} 2+9 c$
$3 b^{2}-12 b \times 6 b-48$ add + like terming
$3 b^{2}+6 b-48$ Factor by dividing
$3\left(b^{2}-2 b-16\right)$ out common d ${ }^{2}$ -outside parethese like undo ing distribution
4. $P(x)=2 x^{3}-18 x$ Factor out GCF factor difference of

$$
2 x\left(x^{2}-9\right) \rightarrow 2 x(x-3)(x+3)
$$

$2 x=0 \quad x-3=0 \quad x+3=0$
squares
Given the polynomial function defined above, what are its zeros? Factor and set each factor $=0$
A $-9,-6,2,3$
(B -9,0,2 $\quad x=0 \quad x=3$ and $x=-3$
-3.3
(-3,0,3
25. If $g(x)=2 x+1$ and $f(x)=g(x)+4$, what is $f(2)$? means $x=2$ plug 2 in for x

$$
f(2)=g(2)+4
$$

A 5

$$
\begin{aligned}
f(2) & =[2(2)+1]+4 \\
& =[4+1]+4
\end{aligned}
$$

(B) 6
so fifers plug 2 in for x for $(g(x)$ then plug what you got

$$
f(2)=5+4
$$ infor $g^{\prime \prime}(x)$

26. Fran $f(2)=9$

\#ic function $f(a)=x^{4}-2.4 x^{2}$ is graphed in the $x y$ plane as shown
above If k ts a constant such that the equation $f(x)=k$ has 4 solutions,
which of the following could be the value of k ?

$$
f(x)=k \text { is a horizontal line }
$$

Must cross function 4 times to have 4 solution

A - 2 dent cross any times Osolvin -1 crosses 4 times
C 0 crosses 3 times there is
D 1 crosses 2 times so 2 solution a bounce at $(0,0) x=0$

Algebra 2 Test SAT Practice Test

5.

3 solution
so must be x^{3} $\operatorname{rot} x^{2}$
Factor out x
Which of the following functions could represent the graph in the x, y-plane, where $y=P(x)$ y and factor quadratic
$g(g(x)$
is a cimposinin A
if means
put the whale
function $g(A)$ in for the x
of the cuter
fruition $j(1)$
the funct n
completely
replaus x

$$
\text { B } \quad M=(C / 1.2272)-3.0556 F
$$

$$
\text { D } \quad M=(3.0556 F / 1.22722)-C
$$

$(a+b+c)(a+b+c)$
9. $(a+b+c)^{2}$

$$
\begin{aligned}
& a(a+b+c)+b(a+b+c)+c(a+b+c) \\
& a^{2}+a b+a c+b a+b^{2}+b c+c a+c b+c^{2}
\end{aligned}
$$

Which of the following is equivalent to the above expression?
(1) $a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
(B) $a^{2}+b^{2}+c^{2}$

$$
a^{2}+2 a b+2 b c+2 c a+b^{2}+c^{2}
$$

all have 2 so factor stout
C $a^{2}+2 a b c+c^{2}$
D] $a^{2}+2 a b+b^{2}+2 b c+c^{2} \quad a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
10. Which of the following represents all solutions (x, y) to the system of equations shown below?
$y=x-2$ you ld graph both Function and see where they crasis $y=x^{2}-x-5$ or s,bostitute and solve for x

$$
\begin{gathered}
x-2=x^{2}-x-5 \\
-x+2-x+2 \\
0=x^{2}-2 x-3 \\
0=(x-3)(x+1)
\end{gathered}
$$

A (3,-1)

(C) $(3,-5)$ and $(,,-1)$
$(3,1)$ and ($-1,-3$)
11. $-7 x^{2}=(y+5)(y-5)$

$$
x+3=0 \quad x+1=0
$$

$5 y=15 x \rightarrow y=\frac{15 x}{5}=3 x-7 x^{2}=9 x^{2}-15 x+15 x-25$
$-7 x^{2}=4 x^{2}-25$
If (a, b) is a solution to the system of equations shown above and $a>0$, what is the value of a ? $x=3$
$3)-2=1$
value of $a ?$
alphabetical order
A $1 / 2$ $a=x \quad b=y$

B

$$
0=16 x^{2}-25
$$

\square
12.

$$
0=(4 x-5)(4 x+5) \quad 3 \quad 1 f_{x}=3
$$

points that work for all 3 at the some the
$(-1,1)$
B $(0,2)$
C $(0,2)$ and $(2,4)$ only work for 2 D $(-1,1),(1,1),(0,2)$ and $(2,4)$
at a time
13. $(2 x-3)(x+4)=0$

Let $x=a$ and $x=b$ be the solutions to the equation above. What is the value of $a+b$?
separate set $=0$ ardsolve
(A. -5/2 $2 x-3=0 \quad x+4=0$

B $-1 / 2$
younced to know what the two solubor are
(C) $5 / 2$

$$
2 x=3
$$

(D) 9.5

$$
x=3 / 2
$$

$$
x=-4
$$

$$
\left.\begin{array}{c}
\frac{3}{2}+-\frac{4}{1} \\
\frac{3}{2}-\frac{8}{2} \\
\frac{-5}{2}
\end{array}\right) \cdot 2
$$ get common denominator multiply to $\rho \leftarrow$ bo Hom^{2} by sure Ht so denominator match

Volexfurm
14. Ri s -0ste-mot: $\left(26 \omega_{1}(1500)\right)$

A. 260
C. $\quad \mathbf{7 0 0 0}$

15. $V=B H$ (Find radius
2. 4 cm
(B) 19500

C $\quad 12.5 \mathrm{~cm}$

$$
\begin{aligned}
& V=B H \\
& V=\pi r^{2} \cdot H \\
& \frac{500}{10}=\frac{\pi r^{2} \cdot 10}{10} \quad \frac{50}{\pi}=\frac{\pi r^{2}}{\pi} \\
& \frac{50}{\pi}=\sqrt{r^{2}}
\end{aligned}
$$

A 1 second
graph on calculator

C 4 seconds (D) 8 second ${ }^{-1}$ secomonds docs nt make serve
17.
A) $1-0.25^{26}$

C $\quad(26)(1.25)$
[D] $(26)(0.25)$
18. $4 b^{3} \cdot\left(b^{4}\right)^{2}=b^{x}$, what is the value of x ?

A 9
C 18

$$
\begin{gathered}
b^{3} b^{8}=b^{x} \\
b^{3+8}=b^{x} \\
3+8=x \\
11=x
\end{gathered}
$$

$$
y^{2}-13 y+40=0
$$

(A) -1 and 0
C. 1

A| $-13 y^{2}-6 y+a=7 y-31$

$$
-7 y+31-7 y+31
$$

$$
\begin{aligned}
& (y-8)(y-5)=0 \\
& y-5=0 \quad y-5=0
\end{aligned}
$$

$$
y-8=0 \quad \text { y }-5=0
$$

20. $2(\sqrt{3 p+13})(p+3)^{2} \quad y=8 \quad y=5$

For what values of is $=-4(x)=2 x^{l}+2$ equal to graph $+f$ find $f(x)=x^{2}+x+27$ set equal where eros s to einchather where eros

$$
\begin{aligned}
& 2 x+2=x^{2}+x+2 \\
& -2 x-2-2 x-2
\end{aligned}
$$

C. 1 and 2

$$
0=x^{2}-x
$$

$$
0=x(x-1)
$$

$$
\text { D } 2 \text { and } 3
$$

22. If $x>0$ and $2 x^{2}+3 x-2=0$, what is the value of x ?

$$
x_{-2}^{2 x(x+2)-1(x+2)}
$$

局 $1 / 2$
$(x+2)(2 x-1)$

$$
\frac{4}{+4}-1[B
$$

D 1
neaditixne0 $x=2 x=1=0$
23. What is the sum of the solutions of $(2 x-1)^{2}=(x+2)^{2}$

$$
8 / 3 \mathrm{Ca}_{3}+y_{3}
$$

$$
\begin{array}{ll}
2 x-1=-(x+2) & 2 x-1=-x-2-1 \\
-x+1-x+1 & 2 x-1=-(x+2) \\
x=3 & +x+1+x+1 \\
3 x-1 / 3 & \\
9 / 3=-1 & 10 / 3 \\
9 / 3-1 / 3 & x=-1 / 3
\end{array}
$$

24. A researcher estimates that the population of a city is declining the current population of the city is 80,000 which of t at $.6 \%$ models the population of the city t years from now ac

$$
80,000(1-0.006)^{t}
$$

$$
A=p(1+f)^{+t}
$$

$$
A=89000(1+
$$

B $\quad 80,000\left(1-0.006^{\frac{t}{t}}\right)$
[C] $80,000-1.006^{\mathrm{t}}$
D $80,000\left(0.006^{t}\right)$

$$
\begin{align*}
& \text { the sum of the solutions to the above equation? } \\
& 3 \rho+13=(p+3)(\rho+3) \\
& \begin{array}{l}
3 p+13=p^{2}+6 p+4 \\
3 p-13-3 p-13-1 / 0 \\
-3 p-13=p^{2}+3-4-40
\end{array} \\
& \begin{array}{l}
3 p+13=p^{2}+6 p+9 \\
-3 p-13-3 p-13-4, ~ 0
\end{array} \\
& \text { What is the sum of the solutions to the above equation? } \\
& \begin{aligned}
0= & p^{2}+3 \rho-4 \\
(p+4)(p-1) & 4 \\
\frac{1}{2} & 2
\end{aligned} \\
& p+4=0 \quad p-1=0 \quad-4+1=-3 \tag{21.}
\end{align*}
$$

