Algebra 2 U	nit 1 Re	eview Gu	uide
-------------	----------	----------	------

Date			
DAIR		~ +	-
	D	đι	-

Hour

Number System

Name all the number sets each number is in \in {N, W, Z, Q, Q', R, I, and/or C} for Numbers 1-3

1.
$$\frac{34}{-2}$$
: -17 $\frac{34}{-2}$ $\in \{ \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} \}$ 2. $4\sqrt{-49}$: $4\sqrt{-49} \in \{ \mathbb{Z}, \mathbb{C} \}$

3. If you are only to get Natural number answers, and you got 1.3 as your answer, could you have done the No 1.3 is Rational, Natural #s are problem correctly? Explain. Counting numbers

Simplify each expression for Numbers 4-6 (Show work steps to earn credit)

4.
$$10(11-2^{4}) \div 4$$
 $10(11-16) \div 4$
 $10(-5) \div 4$
 $10(-$

5.
$$\frac{5 + (6 - 10 + 3)^3}{(-1)^2} + 2$$

$$5. \frac{3(6 + 6 + 3)^{2} + 2}{(-1)^{2}} + 2$$

$$(11 - 16) \div 4$$

$$5 + (-4 + 3)^{2} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$5 + (-1)^{3} + 2$$

$$6 + (-1)^{3} + 2$$

$$6 + (-1)^{3} + 2$$

$$7 + (-1)^{3} + 2$$

$$8 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + (-1)^{3} + 2$$

$$9 + ($$

$$\frac{5+(6-10+3)^{3}}{(-1)^{2}} + 2 \qquad 6. \quad \frac{2}{3}\sqrt{-2^{3} \div 8 \cdot -4} - \frac{4}{15}$$

$$\frac{5+(-4+3)^{3}}{1} + 2 \qquad \frac{2}{3}\sqrt{-8-8} \cdot -4 - \frac{4}{15}$$

$$\frac{5+(-1)^{3}}{1} + 2 \qquad \frac{2}{3}\sqrt{-1-4} - \frac{4}{15}$$

$$\frac{2}{3}\sqrt{-1-4} - \frac{4}{15}$$

$$\frac{2}{3}\sqrt{4} - \frac{4}{15}$$

$$\frac{2}{3}$$
, $\frac{2}{15}$ $\frac{4}{15}$ $\frac{4}{15}$

Write the Algebraic expression for...

7. The product of 5 more than a number cubed and twice a different number is at least 25

8. The negative sum of half of x to the fourth power and eight has the same outcome as the difference of y with a coefficient of -9 and the quotient of thirty and $x = \frac{1}{2}$

Polynomial Parts

$$-(\pm x^{4}+8)=-9y-\frac{30}{x}$$

9. Write a Quartic 4 term polynomial that has a leading coefficient of -1.3, a constant that is 21, and that is in standard form.

10. Name the following for this polynomial
$$22x - 15x^2 + 61$$

Standard Form	Lead Coefficient	Constant	Names (by degree and #of terms)
-15x2+22x+61	-15	61	Quadratic Trinomial