Complement:

Use when: you see the word NOT or when you want AT LEAST 1 to happen, because you can subtract the probability of not at all.

The formula is: The probability of Not an event S happening, is equal to 100% minus the probability of the event happening. This gets you the probability of everything else happening
Complement Formula: $\mathrm{P}($ Not S$)=1-\mathrm{P}(\mathrm{s})$

Examples

a) What is the probability of NOT drawing a king from a standard 52-card deck?

$$
\begin{aligned}
& \text { card deck? } \\
& P(\text { Not King })=1-P\binom{\text { Pick }}{\text { King }} \quad \frac{\text { Note: }}{4 \text { kings }} \\
&=1-\frac{4}{52} \quad \text { ina dec } \\
&=\frac{52}{52}-\frac{4}{52}=\frac{48}{52 \div 4}=\frac{12}{13}
\end{aligned}
$$

b) What is the probability of NOT rolling a 2 or a 3 on a 6 sided die? $P\left(\mu_{0}+2003\right)=1-P($ roll 2013$)$

Examples

$\rightarrow \quad \underset{\sim}{\Delta} \quad \stackrel{\Delta}{\Delta}$

A bag contains 5 yellow, 6 blue, and 4 white chips.
a) What is the probability that a chip selected at random
will NOT be yellow?

$$
\begin{aligned}
& P\left(N_{0}+Y\right)= 1-\frac{5}{15} \\
& \frac{15}{15}-\frac{5}{15} \\
& \frac{10}{15}=\frac{2}{3}
\end{aligned}
$$

$(6+4)$
$\frac{10}{15}$
$\frac{2}{3}$

$P\left(N_{0}+y\right)=$	$\left(-\frac{5}{15}\right.$
$1-\frac{1}{3}$	
$\frac{3}{3}-\frac{1}{3}$	
$\frac{2}{3}$	

b) What is the probability that a chip selected at rand $0^{3} \mathrm{~m}$ will NOT be white?

$$
P\left(N_{0}+\omega\right)=\frac{1}{\frac{15}{15}-\frac{4}{15}}
$$

c) What is the probability that if you select 3 chips, AT LEAST

1 will be blue?

$$
\begin{aligned}
& P\left(\begin{array}{c}
3 \text { chips } \\
\text { at least } \\
\text { Blue }
\end{array}\right)=1-P\left(\begin{array}{c}
3 \text { chips } \\
\text { None are } \\
\text { bole } \\
\text { not } \\
\text { not blue 202 } \\
\text { 2 }
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =1-\frac{504}{2730} \quad \frac{65}{65}-\frac{12}{65} \\
& \frac{2730}{2730}-\frac{504}{2730} \\
& \frac{2226 \div 14}{2730 \div 14}=\frac{159 \div 3}{195 \div 3}=\frac{53}{65}
\end{aligned}
$$

Composite Events Mutually Inclusive Events	Two or more events that can happen together because some characteristics are there is "ovelap"
shared	
And	
If you want both events to happen together at the same time	
Count the options considered together.	

NonMutually Exclusive Events	(Events that share characteristics and
	$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
	Енаmples Totati 15 A bag contains 5 yellow, 6 blue, and 4 white chips. a) What is the probability that a chip will be yellow \bigcirc not blue? $P\left(Y_{0}+N_{0}+B\right)=P(Y)+P\left(N_{0}+B\right)$ - (over'as Yad $\left.N_{0}+B\right)$ $\frac{5}{15}+\frac{9}{15}-\frac{5}{15}=\frac{9}{15} \div 3=\frac{3}{5}$ b) What is the probability that a chip will be yellow and not blue? $P\left(Y_{\text {ad }} \operatorname{nt}+6\right)=\frac{5}{15}$ ovelap c. P (rolling a 4 and an even number on a die) $P(4 \text { ad even })=\frac{1}{6}$
$M D M D$	d. P (rolling a $4 \bigcirc$ Jan even number on a die)
$\begin{array}{r} \frac{8}{20}+\frac{5}{20}-\frac{1}{20} \\ \frac{12}{20} \div 2=\frac{6}{10} \end{array}$	$\begin{aligned} P(4 \text { or even }) & =P(4)+P(\text { even }) \text { - ovelap } \\ & =\frac{1}{6}+\frac{3}{6}-\frac{1}{6} \\ & =\frac{3}{6}=\frac{1}{2} \end{aligned}$

Refresher: Independent events are two or more events in which the previous event has no impact on the remaining events

Probability of two (or more) Independent Events

52 (ads total
2 colors Red /Bal 26

4 suits

If two events, A and B, are independent, then the
probability of BOTH events occurring is the product of each probability.

$P(A$ and $B)=P(A) \cdot P(B)$

Example

a.) For a standard 52 -card deck, what is the probability of drawing the three cards: a 5, a Queen, AND an Ace?

4 of every Number
and face
$P(5, Q$, And Ace $)=\frac{P(5) \cdot P(Q) \cdot P(\text { Ace })}{\frac{4 \div 40}{52 \div 4} 5}$ 2-10, Ace, Jack, Queen
King $\frac{1}{13}$ $\cdot \frac{1}{13} \cdot \frac{1}{13}$ $=\frac{140,608}{2,197}$

Пінед Examples

a) Rolling two dice such that only one is a 5 the sum of the dice is 8

$$
\begin{aligned}
& P(\text { only One 5) }+P(\text { sum is 8) } \\
& \left(\frac{1}{6} \cdot \frac{5}{6}\right)+\left(\frac{1}{6} \cdot \frac{1}{6}\right)+\left(\frac{1}{6} \cdot \frac{1}{6}\right)+\left(\frac{1}{6} \cdot \frac{1}{6}\right)-\left(\frac{1}{6} \cdot \frac{1}{6}\right) \\
& \text { roll 3 } 11 \text { Not } \\
& \text { iven'a standard 52-card deck, what is the }
\end{aligned}
$$

 probability of pulling a club ora Jack? $P(C$ or $J)=P(C 1,5)+P(J)-P(J$ of $(1,6)$ o vd

$$
\frac{13}{52}+\frac{4}{52}-\frac{1}{52}=\frac{16}{52}=4
$$

c) In order to receive his driver's license, Mark must pass both the driving portion and written portion of the license test. On the average, the probability of passing the driving portion on the first time is $7 / 10$ and the probability of passing the written portion on the first attempt is $4 / 5$. Overall, the probability of people passing both portions on the first try is $2 / 3$.

What is the probability that Mark passes the first or the second test on the first try?

$$
\begin{aligned}
& P(P \text { ass Dor } \omega)=P(D)+P(\omega)-P\left(D^{\text {and }} \omega\right) \text { add ovelas } \\
& \text { Common Derommato } \frac{7}{10}+\frac{4}{5}-\frac{2}{3} \\
& L C M: 30
\end{aligned}
$$

$$
\begin{aligned}
& D M \\
& \frac{13}{19}+\frac{14}{19}-\frac{5}{19}=
\end{aligned}
$$

Replacement
When picking more than one thing, you are putting it back each time. This keeps the number of options the same.
multiply probabilities
Examples
a). 5 red apples and 3 green apples. How many ways is there to pick two green apples, if they are replaced?

$$
\begin{array}{ll}
\text { Pickist } & \text { Pick Rad } \\
\text { grenapple } & \text { grapple } \\
\frac{3}{8} \cdot \frac{3}{8}=\frac{9}{64}
\end{array}
$$

b). 5 red apples and 3 green apples. What is the probability of picking two red apples if you put it back each time?

a) Using a standard 52 -card deck, what is the probability of drawing a heart with the first draw, replacing it, then drawing an ace? draw lost draw and

$$
\frac{13}{52} \cdot \frac{4}{52}=\frac{52}{2704}=\frac{52}{52^{2}}=\frac{1}{52}
$$

b) According to the U.S. Department of Transportation, airlines arrive on time 80% of the time. During their vacation, the Sorensen family flew to Seattle, Denver, Phoenix, and back to Chicago. What is the probability that they arrived on time for all of their flights?

$$
\rightarrow S
$$

$$
\rightarrow D \rightarrow P \rightarrow C
$$

c) Kobe Bryant makes 83.7% of the free throws that he shoots. What is the probability that if he shoots 2 free throws, he misses the first and makes the second?

Examples

a) Using a standard 52 -card deck, what is the probability of drawing a heart with the first draw, replacing it, then drawing

b) According to the U.S. Department of Transportation, airlines arrive on time 80\% f the time. During their vacation, the Sorensen family flew to Seattle, Denver, Phoenix, and back to Chicago. What is the probability that they arrived on time for all of their flights?
 is the probability that if he shoots 2 free throws, he misses the first and makes the second?

Probability of
 Two
 Dependent

Events
Without Replacement

If two events, A and B, are dependent, then the probability of both events occurring is the product of each individual probability
Def: Not put back, not same ament of options
$P(A$ and $B)=P(A) \cdot P(B$ after $A)$

